These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 11238461)

  • 1. Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets.
    Ostermeyer AG; Paci JM; Zeng Y; Lublin DM; Munro S; Brown DA
    J Cell Biol; 2001 Mar; 152(5):1071-8. PubMed ID: 11238461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance.
    Pol A; Luetterforst R; Lindsay M; Heino S; Ikonen E; Parton RG
    J Cell Biol; 2001 Mar; 152(5):1057-70. PubMed ID: 11238460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell.
    Fujimoto T; Kogo H; Ishiguro K; Tauchi K; Nomura R
    J Cell Biol; 2001 Mar; 152(5):1079-85. PubMed ID: 11238462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the hydrophobic domain in targeting caveolin-1 to lipid droplets.
    Ostermeyer AG; Ramcharan LT; Zeng Y; Lublin DM; Brown DA
    J Cell Biol; 2004 Jan; 164(1):69-78. PubMed ID: 14709541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caveolin, cholesterol, and lipid droplets?
    van Meer G
    J Cell Biol; 2001 Mar; 152(5):F29-34. PubMed ID: 11238468
    [No Abstract]   [Full Text] [Related]  

  • 6. The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells.
    Breuza L; Corby S; Arsanto JP; Delgrossi MH; Scheiffele P; Le Bivic A
    J Cell Sci; 2002 Dec; 115(Pt 23):4457-67. PubMed ID: 12414992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational defects slow Golgi exit, block oligomerization, and reduce raft affinity of caveolin-1 mutant proteins.
    Ren X; Ostermeyer AG; Ramcharan LT; Zeng Y; Lublin DM; Brown DA
    Mol Biol Cell; 2004 Oct; 15(10):4556-67. PubMed ID: 15304521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation.
    Smart EJ; Ying YS; Conrad PA; Anderson RG
    J Cell Biol; 1994 Dec; 127(5):1185-97. PubMed ID: 7962084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin-annexin II lipid-protein complex.
    Uittenbogaard A; Everson WV; Matveev SV; Smart EJ
    J Biol Chem; 2002 Feb; 277(7):4925-31. PubMed ID: 11733519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis.
    Robenek MJ; Severs NJ; Schlattmann K; Plenz G; Zimmer KP; Troyer D; Robenek H
    FASEB J; 2004 May; 18(7):866-8. PubMed ID: 15001554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a splice variant of mouse caveolin-2 mRNA encoding an isoform lacking the C-terminal domain.
    Kogo H; Ishiguro K; Kuwaki S; Fujimoto T
    Arch Biochem Biophys; 2002 May; 401(1):108-14. PubMed ID: 12054493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum.
    Schlegel A; Arvan P; Lisanti MP
    J Biol Chem; 2001 Feb; 276(6):4398-408. PubMed ID: 11078729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rab6-mediated retrograde transport regulates inner nuclear membrane targeting of caveolin-2 in response to insulin.
    Jeong K; Kwon H; Lee J; Jang D; Hwang EM; Park JY; Pak Y
    Traffic; 2012 Sep; 13(9):1218-33. PubMed ID: 22607032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae.
    Damm EM; Pelkmans L; Kartenbeck J; Mezzacasa A; Kurzchalia T; Helenius A
    J Cell Biol; 2005 Jan; 168(3):477-88. PubMed ID: 15668298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps.
    Conrad PA; Smart EJ; Ying YS; Anderson RG; Bloom GS
    J Cell Biol; 1995 Dec; 131(6 Pt 1):1421-33. PubMed ID: 8522601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum.
    Le PU; Nabi IR
    J Cell Sci; 2003 Mar; 116(Pt 6):1059-71. PubMed ID: 12584249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies.
    Pol A; Martin S; Fernández MA; Ingelmo-Torres M; Ferguson C; Enrich C; Parton RG
    Mol Biol Cell; 2005 Apr; 16(4):2091-105. PubMed ID: 15689493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1.
    Mora R; Bonilha VL; Marmorstein A; Scherer PE; Brown D; Lisanti MP; Rodriguez-Boulan E
    J Biol Chem; 1999 Sep; 274(36):25708-17. PubMed ID: 10464308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of caveolin association with the Golgi complex: identification of a cis-Golgi targeting domain in the caveolin molecule.
    Luetterforst R; Stang E; Zorzi N; Carozzi A; Way M; Parton RG
    J Cell Biol; 1999 Jun; 145(7):1443-59. PubMed ID: 10385524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingomyelin-enriched microdomains at the Golgi complex.
    Gkantiragas I; Brügger B; Stüven E; Kaloyanova D; Li XY; Löhr K; Lottspeich F; Wieland FT; Helms JB
    Mol Biol Cell; 2001 Jun; 12(6):1819-33. PubMed ID: 11408588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.