These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1022 related articles for article (PubMed ID: 11238984)

  • 1. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability.
    Vieille C; Zeikus GJ
    Microbiol Mol Biol Rev; 2001 Mar; 65(1):1-43. PubMed ID: 11238984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermozymes.
    Vieille C; Burdette DS; Zeikus JG
    Biotechnol Annu Rev; 1996; 2():1-83. PubMed ID: 9704095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural features of thermozymes.
    Li WF; Zhou XX; Lu P
    Biotechnol Adv; 2005 Jun; 23(4):271-81. PubMed ID: 15848038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water.
    Ladenstein R; Antranikian G
    Adv Biochem Eng Biotechnol; 1998; 61():37-85. PubMed ID: 9670797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assaying activity and assessing thermostability of hyperthermophilic enzymes.
    Daniel RM; Danson MJ
    Methods Enzymol; 2001; 334():283-93. PubMed ID: 11398470
    [No Abstract]   [Full Text] [Related]  

  • 6. Thermophilic adaptation of proteins.
    Sterner R; Liebl W
    Crit Rev Biochem Mol Biol; 2001; 36(1):39-106. PubMed ID: 11256505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industrial relevance of thermophilic Archaea.
    Egorova K; Antranikian G
    Curr Opin Microbiol; 2005 Dec; 8(6):649-55. PubMed ID: 16257257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperthermophilic enzymes--stability, activity and implementation strategies for high temperature applications.
    Unsworth LD; van der Oost J; Koutsopoulos S
    FEBS J; 2007 Aug; 274(16):4044-56. PubMed ID: 17683334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit interfaces of oligomeric hyperthermophilic enzymes display enhanced compactness.
    Baldasseroni F; Pascarella S
    Int J Biol Macromol; 2009 May; 44(4):353-60. PubMed ID: 19428466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of thermostability in the cytochrome P450 fold.
    Harris KL; Thomson RES; Strohmaier SJ; Gumulya Y; Gillam EMJ
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):97-115. PubMed ID: 28822812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes.
    Maugini E; Tronelli D; Bossa F; Pascarella S
    Comput Biol Chem; 2009 Apr; 33(2):137-48. PubMed ID: 18845483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase.
    Vieille C; Epting KL; Kelly RM; Zeikus JG
    Eur J Biochem; 2001 Dec; 268(23):6291-301. PubMed ID: 11733026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus.
    Hess D; Krüger K; Knappik A; Palm P; Hensel R
    Eur J Biochem; 1995 Oct; 233(1):227-37. PubMed ID: 7588750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archaeal DNA polymerases in biotechnology.
    Zhang L; Kang M; Xu J; Huang Y
    Appl Microbiol Biotechnol; 2015 Aug; 99(16):6585-97. PubMed ID: 26150245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases.
    Nisha M; Satyanarayana T
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5661-79. PubMed ID: 27142298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostability and thermoactivity of enzymes from hyperthermophilic Archaea.
    Adams MW; Kelly RM
    Bioorg Med Chem; 1994 Jul; 2(7):659-67. PubMed ID: 7858973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of hyperthermophilic endoglucanase Cel12B from Thermotoga maritima and the properties of its functional residues.
    Shi H; Zhang Y; Wang L; Li X; Li W; Wang F; Li X
    BMC Struct Biol; 2014 Feb; 14():8. PubMed ID: 24529187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion pairs and the thermotolerance of proteins from hyperthermophiles: a "traffic rule" for hot roads.
    Karshikoff A; Ladenstein R
    Trends Biochem Sci; 2001 Sep; 26(9):550-6. PubMed ID: 11551792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural comparison of tRNA m(1)A58 methyltransferases revealed different molecular strategies to maintain their oligomeric architecture under extreme conditions.
    Guelorget A; Barraud P; Tisné C; Golinelli-Pimpaneau B
    BMC Struct Biol; 2011 Dec; 11():48. PubMed ID: 22168821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution,
    Russell RJ; Ferguson JM; Hough DW; Danson MJ; Taylor GL
    Biochemistry; 1997 Aug; 36(33):9983-94. PubMed ID: 9254593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.