BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 11239199)

  • 1. Mechanisms that produce nitric oxide-mediated relaxation of cerebral arteries during atherosclerosis.
    Didion SP; Heistad DD; Faraci FM
    Stroke; 2001 Mar; 32(3):761-6. PubMed ID: 11239199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide.
    Sobey CG; Faraci FM
    Br J Pharmacol; 1999 Mar; 126(6):1437-43. PubMed ID: 10217538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a] quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation.
    Feelisch M; Kotsonis P; Siebe J; Clement B; Schmidt HH
    Mol Pharmacol; 1999 Aug; 56(2):243-53. PubMed ID: 10419542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of 20-HETE to vasodilator actions of nitric oxide in the cerebral microcirculation.
    Alonso-Galicia M; Hudetz AG; Shen H; Harder DR; Roman RJ
    Stroke; 1999 Dec; 30(12):2727-34; discussion 2734. PubMed ID: 10583004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of protease-activated receptor-2 (PAR-2) elicits nitric oxide-dependent dilatation of the basilar artery in vivo.
    Sobey CG; Cocks TM
    Stroke; 1998 Jul; 29(7):1439-44. PubMed ID: 9660401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of soluble guanylate cyclase in dilator responses of the cerebral microcirculation.
    Faraci FM; Sobey CG
    Brain Res; 1999 Mar; 821(2):368-73. PubMed ID: 10064823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles.
    Sobey CG; Faraci FM
    Stroke; 1997 Apr; 28(4):837-42; discussion 842-3. PubMed ID: 9099205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) of responses to nitric oxide-donors in rat pulmonary artery: influence of the mechanism of nitric oxide generation.
    Homer KL; Fiore SA; Wanstall JC
    J Pharm Pharmacol; 1999 Feb; 51(2):135-9. PubMed ID: 10217311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and charybdotoxin (CTX) on relaxations of isolated cerebral arteries to nitric oxide.
    Onoue H; Katusic ZS
    Brain Res; 1998 Feb; 785(1):107-13. PubMed ID: 9526059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential sensitivity among nitric oxide donors toward ODQ-mediated inhibition of vascular relaxation.
    Tseng CM; Tabrizi-Fard MA; Fung HL
    J Pharmacol Exp Ther; 2000 Feb; 292(2):737-42. PubMed ID: 10640313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vasorelaxation of cerebral arteries by carbon monoxide.
    Komuro T; Borsody MK; Ono S; Marton LS; Weir BK; Zhang ZD; Paik E; Macdonald RL
    Exp Biol Med (Maywood); 2001 Oct; 226(9):860-5. PubMed ID: 11568310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation to authentic nitric oxide and SIN-1 in rat isolated mesenteric arteries: variable role for smooth muscle hyperpolarization.
    Plane F; Sampson LJ; Smith JJ; Garland CJ
    Br J Pharmacol; 2001 Jul; 133(5):665-72. PubMed ID: 11429390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide and sodium nitroprusside-induced relaxation of the human umbilical artery.
    Lovren F; Triggle C
    Br J Pharmacol; 2000 Oct; 131(3):521-9. PubMed ID: 11015303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade.
    Priviero FB; Teixeira CE; Toque HA; Claudino MA; Webb RC; De Nucci G; Zanesco A; Antunes E
    Clin Exp Pharmacol Physiol; 2006; 33(5-6):448-55. PubMed ID: 16700877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene transfer of inducible nitric oxide synthase impairs relaxation in human and rabbit cerebral arteries.
    Gunnett CA; Lund DD; Howard MA; Chu Y; Faraci FM; Heistad DD
    Stroke; 2002 Sep; 33(9):2292-6. PubMed ID: 12215601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NO- activates soluble guanylate cyclase and Kv channels to vasodilate resistance arteries.
    Irvine JC; Favaloro JL; Kemp-Harper BK
    Hypertension; 2003 Jun; 41(6):1301-7. PubMed ID: 12743008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular nitric oxide release mediates soluble guanylate cyclase-independent vasodilator action of spermine NONOate: comparison with other nitric oxide donors in isolated rat femoral arteries.
    Miller MR; Okubo K; Roseberry MJ; Webb DJ; Megson IL
    J Cardiovasc Pharmacol; 2004 Mar; 43(3):440-51. PubMed ID: 15076229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 2-nitrate-1,3-dibuthoxypropan, a new nitric oxide donor, induces vasorelaxation in mesenteric arteries of the rat.
    França-Silva MS; Luciano MN; Ribeiro TP; Silva JS; Santos AF; França KC; Nakao LS; Athayde-Filho PF; Braga VA; Medeiros IA
    Eur J Pharmacol; 2012 Sep; 690(1-3):170-5. PubMed ID: 22796675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of cGMP hydrolysing phosphodiesterases 1 and 5 in cerebral artery dilatation.
    Kruuse C; Rybalkin SD; Khurana TS; Jansen-Olesen I; Olesen J; Edvinsson L
    Eur J Pharmacol; 2001 May; 420(1):55-65. PubMed ID: 11412839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chronic hypoxia on soluble guanylate cyclase activity in fetal and adult ovine cerebral arteries.
    Pearce WJ; Williams JM; White CR; Lincoln TM
    J Appl Physiol (1985); 2009 Jul; 107(1):192-9. PubMed ID: 19407253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.