These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11239390)

  • 21. [Genetic instability as a driver for oncogenesis].
    Cazaux C
    Bull Cancer; 2010 Nov; 97(11):1241-51. PubMed ID: 21084240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A DNA integrity network in the yeast Saccharomyces cerevisiae.
    Pan X; Ye P; Yuan DS; Wang X; Bader JS; Boeke JD
    Cell; 2006 Mar; 124(5):1069-81. PubMed ID: 16487579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer. Aneuploidy drives a mutator phenotype in cancer.
    Kolodner RD; Cleveland DW; Putnam CD
    Science; 2011 Aug; 333(6045):942-3. PubMed ID: 21852477
    [No Abstract]   [Full Text] [Related]  

  • 24. The role of homologous recombination repair in the formation of chromosome aberrations.
    Griffin CS; Thacker J
    Cytogenet Genome Res; 2004; 104(1-4):21-7. PubMed ID: 15162011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model.
    Barbour L; Xiao W
    Mutat Res; 2003 Nov; 532(1-2):137-55. PubMed ID: 14643434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of mammalian Mus81 in genome integrity and tumor suppression.
    McPherson JP; Lemmers B; Chahwan R; Pamidi A; Migon E; Matysiak-Zablocki E; Moynahan ME; Essers J; Hanada K; Poonepalli A; Sanchez-Sweatman O; Khokha R; Kanaar R; Jasin M; Hande MP; Hakem R
    Science; 2004 Jun; 304(5678):1822-6. PubMed ID: 15205536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae.
    Zhang C; Roberts TM; Yang J; Desai R; Brown GW
    DNA Repair (Amst); 2006 Mar; 5(3):336-46. PubMed ID: 16325482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microsatellite instability in human cancer.
    Speicher MR
    Oncol Res; 1995; 7(6):267-75. PubMed ID: 8527861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes.
    Lawrence CW; Hinkle DC
    Cancer Surv; 1996; 28():21-31. PubMed ID: 8977026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aberrant expression of alternative DNA polymerases: a source of mutator phenotype as well as replicative stress in cancer.
    Hoffmann JS; Cazaux C
    Semin Cancer Biol; 2010 Oct; 20(5):312-9. PubMed ID: 20934518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased genome instability is not accompanied by sensitivity to DNA damaging agents in aged yeast cells.
    Novarina D; Mavrova SN; Janssens GE; Rempel IL; Veenhoff LM; Chang M
    DNA Repair (Amst); 2017 Jun; 54():1-7. PubMed ID: 28384494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell cycle checkpoints: preventing an identity crisis.
    Elledge SJ
    Science; 1996 Dec; 274(5293):1664-72. PubMed ID: 8939848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aneuploidy-promoted immortal DNA strands to random separation is a root cause of cancer.
    Zhang F; Li Q
    Med Hypotheses; 2005; 65(6):1200-1. PubMed ID: 16125869
    [No Abstract]   [Full Text] [Related]  

  • 34. Genetic variation associated with chromosomal aberration frequency: A genome-wide association study.
    Niazi Y; Thomsen H; Smolkova B; Vodickova L; Vodenkova S; Kroupa M; Vymetalkova V; Kazimirova A; Barancokova M; Volkovova K; Staruchova M; Hoffmann P; Nöthen MM; Dušinská M; Musak L; Vodicka P; Hemminki K; Försti A
    Environ Mol Mutagen; 2019 Jan; 60(1):17-28. PubMed ID: 30368896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae.
    Blake D; Luke B; Kanellis P; Jorgensen P; Goh T; Penfold S; Breitkreutz BJ; Durocher D; Peter M; Tyers M
    Genetics; 2006 Dec; 174(4):1709-27. PubMed ID: 16751663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA-replication fidelity, mismatch repair and genome instability in cancer cells.
    Umar A; Kunkel TA
    Eur J Biochem; 1996 Jun; 238(2):297-307. PubMed ID: 8681938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the error-free damage bypass postreplication repair pathway in the maintenance of genomic stability.
    Smirnova M; Klein HL
    Mutat Res; 2003 Nov; 532(1-2):117-35. PubMed ID: 14643433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage.
    Huang ME; Kolodner RD
    Mol Cell; 2005 Mar; 17(5):709-20. PubMed ID: 15749020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae.
    Zheng DQ; Zhang K; Wu XC; Mieczkowski PA; Petes TD
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8114-E8121. PubMed ID: 27911848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA Damage Tolerance Pathway Choice Through Uls1 Modulation of Srs2 SUMOylation in
    Kramarz K; Mucha S; Litwin I; Barg-Wojas A; Wysocki R; Dziadkowiec D
    Genetics; 2017 May; 206(1):513-525. PubMed ID: 28341648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.