These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 11239483)

  • 1. Theoretical studies on the regulation of oxidative phosphorylation in intact tissues.
    Korzeniewski B
    Biochim Biophys Acta; 2001 Mar; 1504(1):31-45. PubMed ID: 11239483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of enzyme deficiencies on oxidative phosphorylation: from isolated mitochondria to intact tissues. Theoretical studies.
    Korzeniewski B
    Mol Biol Rep; 2002; 29(1-2):197-202. PubMed ID: 12241057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of ATP supply during muscle contraction: theoretical studies.
    Korzeniewski B
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1189-95. PubMed ID: 9494084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of substrate activation (hydrolysis of ATP by first steps of glycolysis and beta-oxidation) on the effect of enzyme deficiencies, inhibitors, substrate shortage and energy demand on oxidative phosphorylation.
    Korzeniewski B
    Biophys Chem; 2003 May; 104(1):107-19. PubMed ID: 12834831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of oxidative phosphorylation during work transitions results from its kinetic properties.
    Korzeniewski B
    J Appl Physiol (1985); 2014 Jan; 116(1):83-94. PubMed ID: 24157529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic control over the oxygen consumption flux in intact skeletal muscle: in silico studies.
    Liguzinski P; Korzeniewski B
    Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1213-24. PubMed ID: 16760266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of oxidative phosphorylation in intact mammalian heart in vivo.
    Korzeniewski B; Noma A; Matsuoka S
    Biophys Chem; 2005 Jul; 116(2):145-57. PubMed ID: 15950827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies.
    Korzeniewski B; Mazat JP
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):143-8. PubMed ID: 8870661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical studies on the control of the oxidative phosphorylation system.
    Korzeniewski B; Froncisz W
    Biochim Biophys Acta; 1992 Aug; 1102(1):67-75. PubMed ID: 1324730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B
    Biochem J; 2003 Nov; 375(Pt 3):799-804. PubMed ID: 12901719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative phosphorylation K
    Willis W; Willis E; Kuzmiak-Glancy S; Kras K; Hudgens J; Barakati N; Stern J; Mandarino L
    Biochim Biophys Acta Bioenerg; 2021 Aug; 1862(8):148430. PubMed ID: 33887230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate determination of the oxidative phosphorylation affinity for ADP in isolated mitochondria.
    Gouspillou G; Rouland R; Calmettes G; Deschodt-Arsac V; Franconi JM; Bourdel-Marchasson I; Diolez P
    PLoS One; 2011; 6(6):e20709. PubMed ID: 21694779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate oxidation and energy production by Guerin epithelioma mitochondria.
    Pawlicka E; Rzezycki CW
    Arch Geschwulstforsch; 1979; 49(2):124-31. PubMed ID: 224832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-controlling steps of oxidative phosphorylation in rat liver mitochondria. A synoptic approach of model and experiment.
    Bohnensack R; Küster U; Letko G
    Biochim Biophys Acta; 1982 Jun; 680(3):271-80. PubMed ID: 7104323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of respiration by the mitochondrial phosphorylation state.
    Owen CS; Wilson DF
    Arch Biochem Biophys; 1974 Apr; 161(2):581-91. PubMed ID: 4365207
    [No Abstract]   [Full Text] [Related]  

  • 19. The modeling of oxidative phosphorylation in skeletal muscle.
    Korzeniewski B
    Jpn J Physiol; 2004 Dec; 54(6):511-6. PubMed ID: 15760482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of oxidative phosphorylation in mammalian skeletal muscle.
    Korzeniewski B; Zoladz JA
    Biophys Chem; 2001 Aug; 92(1-2):17-34. PubMed ID: 11527576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.