These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 11239704)

  • 1. An electrophysiological test of the effect of the temporal pattern of light adaptation on teleost H1 type horizontal cell plasticity.
    Haamedi SN; Djamgoz MB
    Neurosci Lett; 2001 Mar; 301(1):9-12. PubMed ID: 11239704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine and nitric oxide control both flickering and steady-light-induced cone contraction and horizontal cell spinule formation in the teleost (carp) retina: serial interaction of dopamine and nitric oxide.
    Haamedi SN; Djamgoz MB
    J Comp Neurol; 2002 Jul; 449(2):120-8. PubMed ID: 12115683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of different patterns of light adaptation on cellular and synaptic plasticity in teleost retina: comparison of flickering and steady lights.
    Haamedi SN; Djamgoz MB
    Neurosci Lett; 1996 Mar; 206(2-3):93-6. PubMed ID: 8710195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nitric oxide, light adaptation and APB on spectral characteristics of H1 horizontal cells in carp retina.
    Yamada M; Fraser SP; Furukawa T; Hirasawa H; Katano K; Djamgoz M; Yasui S
    Neurosci Res; 1999 Dec; 35(4):309-19. PubMed ID: 10617322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral plasticity of H1 horizontal cells in carp retina: independent modulation by dopamine and light-adaptation.
    Djamgoz MB; Fitzgerald EM; Yamada M
    Eur J Neurosci; 1996 Aug; 8(8):1571-9. PubMed ID: 8921249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide controls the light adaptive chromatic difference in receptive field size of H1 horizontal cell network in carp retina.
    Furukawa T; Petruv R; Yasui S; Yamada M; Djamgoz MB
    Exp Brain Res; 2002 Dec; 147(3):296-304. PubMed ID: 12428137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide release is induced by dopamine during illumination of the carp retina: serial neurochemical control of light adaptation.
    Sekaran S; Cunningham J; Neal MJ; Hartell NA; Djamgoz MB
    Eur J Neurosci; 2005 Apr; 21(8):2199-208. PubMed ID: 15869516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nerve growth factor induces light adaptive cellular and synaptic plasticity in the outer retina of fish.
    Haamedi SN; Karten HJ; Djamgoz MB
    J Comp Neurol; 2001 Mar; 431(4):397-404. PubMed ID: 11223810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of chromatic difference in receptive field size of H1 horizontal cells in carp retina: dopamine- and APB-sensitive mechanisms.
    Djamgoz MB; Petruv R; Yasui S; Furukawa T; Yamada M
    Neurosci Res; 1998 Jan; 30(1):13-24. PubMed ID: 9572576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nitric oxide on the horizontal cell network and dopamine release in the carp retina.
    Pottek M; Schultz K; Weiler R
    Vision Res; 1997 May; 37(9):1091-102. PubMed ID: 9196728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide, 2-amino-4-phosphonobutyric acid and light/dark adaptation modulate short-wavelength-sensitive synaptic transmission to retinal horizontal cells.
    Furukawa T; Yamada M; Petruv R; Djamgoz MB; Yasui S
    Neurosci Res; 1997 Jan; 27(1):65-74. PubMed ID: 9089700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative retinal and choroidal blood flow during light, dark adaptation and flicker light stimulation in rats using fluorescent microspheres.
    Shih YY; Wang L; De La Garza BH; Li G; Cull G; Kiel JW; Duong TQ
    Curr Eye Res; 2013 Feb; 38(2):292-8. PubMed ID: 23317112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductance-decreasing synaptic mechanisms mediating cone input to H1 horizontal cells in carp retina.
    Yamada M; Djamgoz MB; Low JC; Furukawa T; Yasui S
    Neurosci Res Suppl; 1991; 15():S51-65. PubMed ID: 1798613
    [No Abstract]   [Full Text] [Related]  

  • 14. Response of carp (Cyprinus carpio) horizontal cells to heterochromatic flicker photometry.
    De Aguiar MJ; Ventura DF; da Silva Filho M; de Souza JM; Maciel R; Lee BB
    Vis Neurosci; 2006; 23(3-4):437-40. PubMed ID: 16961977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light adaptation and frequency transfer properties of cat horizontal cells.
    Lankheet MJ; van Wezel RJ; van de Grind WA
    Vision Res; 1991; 31(7-8):1129-42. PubMed ID: 1891807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latency of horizontal cell response in the carp retina.
    Yamada M; Shigematsu Y; Fuwa M
    Vision Res; 1985; 25(6):767-74. PubMed ID: 2992160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of flicker adaptation and temporal gain control on the flicker ERG.
    Wu S; Burns SA; Elsner AE
    Vision Res; 1995 Nov; 35(21):2943-53. PubMed ID: 8533333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties.
    Pflug R; Nelson R; Ahnelt PK
    J Neurophysiol; 1990 Aug; 64(2):313-25. PubMed ID: 2213120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromaticity of synaptic inputs to H1 horizontal cells in carp retina: analysis by voltage-clamp and spectral adaptation.
    Yamada M; Low JC; Djamgoz MB
    Exp Brain Res; 1992; 89(3):465-72. PubMed ID: 1644113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal analysis of electroretinographic responses in fishes with rod-dominated and mixed rod-cone retina.
    Milosević M; Visnjić-Jeftić Z; Damjanović I; Nikcević M; Andjus P; Gacić Z
    Gen Physiol Biophys; 2009 Sep; 28(3):276-82. PubMed ID: 20037193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.