These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11240375)

  • 21. Calculation of inhibitor Ki and inhibitor type from the concentration of inhibitor for 50% inhibition for Michaelis-Menten enzymes.
    Brandt RB; Laux JE; Yates SW
    Biochem Med Metab Biol; 1987 Jun; 37(3):344-9. PubMed ID: 3606895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic co-operativity of monomeric mnemonical enzymes. The significance of the kinetic Hill coefficient.
    Ricard J; Noat G
    Eur J Biochem; 1985 Nov; 152(3):557-64. PubMed ID: 4054121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. II. Effect of adsorption of the substrate or enzyme on the steady-state kinetics.
    Gatt S; Bartfai T
    Biochim Biophys Acta; 1977 Jul; 488(1):13-24. PubMed ID: 889854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple generalized equation for the analysis of multiple inhibitions of Michaelis-Menten kinetic systems.
    Chou TC; Talalay P
    J Biol Chem; 1977 Sep; 252(18):6438-42. PubMed ID: 893418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new approach in the kinetics of biological transport. The potential of reversible inhibition studies.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1978 Jun; 510(1):186-200. PubMed ID: 667035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of enzyme action on surface-attached substrates: a practical guide to progress curve analysis in any kinetic situation.
    Anne A; Demaille C
    Langmuir; 2012 Oct; 28(41):14665-71. PubMed ID: 22978617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On a nonelementary progress curve equation and its application in enzyme kinetics.
    Golicnik M
    J Chem Inf Comput Sci; 2002; 42(2):157-61. PubMed ID: 11911683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equations for progress curves of some kinetic models of enzyme-single substrate-single slow binding modifier system.
    Stojan J
    J Enzyme Inhib; 1998 Jun; 13(3):161-76. PubMed ID: 9629535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models.
    Hofmeyr JH; Cornish-Bowden A
    Comput Appl Biosci; 1997 Aug; 13(4):377-85. PubMed ID: 9283752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential misconceptions arising from the application of enzyme kinetic equations to ligand-receptor systems at equilibrium.
    Tomlinson G
    Can J Physiol Pharmacol; 1988 Apr; 66(4):342-9. PubMed ID: 2844370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Final phase of enzyme reactions following a Michaelis-Menten mechanisms in which the free enzyme and/or the enzyme-substrate complex are unstable.
    Varón R; Garrido del Solo C; García-Moreno M; Sánchez-Gracia A; García-Cánovas F
    Biol Chem Hoppe Seyler; 1994 Jan; 375(1):35-42. PubMed ID: 8003255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exact Product Formation Rates for Stochastic Enzyme Kinetics.
    Grima R; Leier A
    J Phys Chem B; 2017 Jan; 121(1):13-23. PubMed ID: 27959536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress-curve equations for reversible enzyme-catalysed reactions inhibited by tight-binding inhibitors.
    Szedlacsek SE; Ostafe V; Duggleby RG; Serban M; Vlad MO
    Biochem J; 1990 Feb; 265(3):647-53. PubMed ID: 2306205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of kinetic parameters in the inactivation of an enzyme by a suicide substrate.
    Funaki T; Takanohashi Y; Fukazawa H; Kuruma I
    Biochim Biophys Acta; 1991 May; 1078(1):43-6. PubMed ID: 2049382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of suicide substrates.
    Wang ZX
    J Theor Biol; 1990 Dec; 147(4):497-508. PubMed ID: 2074726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The transient-state kinetics of two-substrate enzyme systems operating by an ordered ternary-complex mechanism.
    Pettersson G
    Eur J Biochem; 1976 Oct; 69(1):273-8. PubMed ID: 991859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progress curves of reactions catalyzed by unstable enzymes. A theoretical approach.
    Duggleby RG
    J Theor Biol; 1986 Nov; 123(1):67-80. PubMed ID: 3626585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advantages of continuous over batch reactors for the kinetic analysis of enzymes inhibited by an unknown substrate impurity.
    Gallifuoco A; Alfani F; Cantarella M
    Biotechnol Bioeng; 2002 Sep; 79(6):641-6. PubMed ID: 12209811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP sulfurylase from Penicillium chrysogenum: measurements of the true specific activity of an enzyme subject to potent product inhibition and a reassessment of the kinetic mechanism.
    Seubert PA; Hoang L; Renosto F; Segel IH
    Arch Biochem Biophys; 1983 Sep; 225(2):679-91. PubMed ID: 6312889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of kinetic parameters for substrate and inhibitor in a reaction with an enzyme sample containing different types of inhibitor.
    Kato T; Shimotohno K
    Biochim Biophys Acta; 1984 Sep; 801(2):157-62. PubMed ID: 6477964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.