BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 11240911)

  • 21. Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from Zea mays: comparison with the C4-form enzyme.
    Dong LY; Masuda T; Kawamura T; Hata S; Izui K
    Plant Cell Physiol; 1998 Aug; 39(8):865-73. PubMed ID: 9787461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supply of O2 regulates demand for O2 and uptake of malate by N2-fixing bacteroids from soybean nodules.
    Li Y; Green LS; Holtzapffel R; Day DA; Bergersen FJ
    Microbiology (Reading); 2001 Mar; 147(Pt 3):663-670. PubMed ID: 11238973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Partial purification and characterization of phosphoenolpyruvate carboxylase protein-serine kinase from illuminated maize leaves.
    Wang YH; Chollet R
    Arch Biochem Biophys; 1993 Aug; 304(2):496-502. PubMed ID: 8346924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of short-term N(2) deficiency on expression of the ureide pathway in cowpea root nodules.
    Smith PM; Winter H; Storer PJ; Bussell JD; Schuller KA; Atkins CA
    Plant Physiol; 2002 Jul; 129(3):1216-21. PubMed ID: 12114575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants.
    O'Leary B; Rao SK; Kim J; Plaxton WC
    J Biol Chem; 2009 Sep; 284(37):24797-805. PubMed ID: 19605358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Routes of pyruvate synthesis in phosphorus-deficient lupin roots and nodules.
    Le Roux MR; Ward CL; Botha FC; Valentine AJ
    New Phytol; 2006; 169(2):399-408. PubMed ID: 16411942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reassessment of major products of N2 fixation by bacteroids from soybean root nodules.
    Li Y; Parsons R; Day DA; Bergersen FJ
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1959-1966. PubMed ID: 12055315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diurnal regulation of phosphoenolpyruvate carboxylase from crassula.
    Wu MX; Wedding RT
    Plant Physiol; 1985 Mar; 77(3):667-75. PubMed ID: 16664117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression, purification, and initial characterization of a recombinant form of plant PEP-carboxylase kinase from CAM-induced Mesembryanthemum crystallinum with enhanced solubility in Escherichia coli.
    Ermolova NV; Ann Cushman M; Taybi T; Condon SA; Cushman JC; Chollet R
    Protein Expr Purif; 2003 May; 29(1):123-31. PubMed ID: 12729733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytosolic pyruvate kinase: subunit composition, activity, and amount in developing castor and soybean seeds, and biochemical characterization of the purified castor seed enzyme.
    Turner WL; Knowles VL; Plaxton WC
    Planta; 2005 Dec; 222(6):1051-62. PubMed ID: 16049677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon Dioxide Fixation by Lupin Root Nodules: I. Characterization, Association with Phosphoenolpyruvate Carboxylase, and Correlation with Nitrogen Fixation during Nodule Development.
    Christeller JT; Laing WA; Sutton WD
    Plant Physiol; 1977 Jul; 60(1):47-50. PubMed ID: 16660040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of pH on the covalent and metabolic control of C4 phosphoenolpyruvate carboxylase from Sorghum leaf.
    Echevarria C; Pacquit V; Bakrim N; Osuna L; Delgado B; Arrio-Dupont M; Vidal J
    Arch Biochem Biophys; 1994 Dec; 315(2):425-30. PubMed ID: 7986087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of allosteric effectors on the kinetics and equilibrium binding of phosphoenolpyruvate (PEP) to phosphoenolpyruvate carboxylase (PEPC) from Zea mays.
    Frank J; Clarke RJ; Vater J; Holzwarth JF
    Biophys Chem; 2001 Aug; 92(1-2):53-64. PubMed ID: 11527579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds.
    O'Leary B; Rao SK; Plaxton WC
    Biochem J; 2011 Jan; 433(1):65-74. PubMed ID: 20950272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of phosphoenolpyruvate carboxylase by malate.
    Wedding RT; Black MK; Meyer CR
    Plant Physiol; 1990 Feb; 92(2):456-61. PubMed ID: 16667297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Day/Night Changes in the Sensitivity of Phosphoenolpyruvate Carboxylase to Malate during Crassulacean Acid Metabolism.
    Winter K
    Plant Physiol; 1980 May; 65(5):792-6. PubMed ID: 16661284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Marked modulation by phosphate of phosphoenolpyruvate carboxylase in leaves of Amaranthus hypochondriacus, a NAD-ME type C4 plant: decrease in malate sensitivity but no change in the phosphorylation status.
    Murmu J; Chinthapalli B; Raghavendra AS
    J Exp Bot; 2003 Dec; 54(393):2661-8. PubMed ID: 14585826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analyses of phosphoenolpyruvate carboxylase gene structure and expression in alfalfa nodules.
    Pathirana MS; Samac DA; Roeven R; Yoshioka H; Vance CP; Gantt JS
    Plant J; 1997 Aug; 12(2):293-304. PubMed ID: 9301082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of Phosphoenolpyruvate Carboxylase from the Green Alga Selenastrum minutum: Properties Associated with Replenishment of Tricarboxylic Acid Cycle Intermediates during Ammonium Assimilation.
    Schuller KA; Plaxton WC; Turpin DH
    Plant Physiol; 1990 Aug; 93(4):1303-11. PubMed ID: 16667617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CO2-fixing enzymes and phosphoenolpyruvate metabolism in the fish parasite Hysterothylacium aduncum (Ascaridoidea, Anisakidae).
    Malagón D; Benítez R; Valero A; Adroher FJ
    Dis Aquat Organ; 2009 Jul; 85(3):217-23. PubMed ID: 19750810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.