BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11240990)

  • 1. Acoustic role of the buttress and posterior incudal ligament in human temporal bones.
    Hato N; Welsh JT; Goode RL; Stenfelt S
    Otolaryngol Head Neck Surg; 2001 Mar; 124(3):274-8. PubMed ID: 11240990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New knowledge about the function of the human middle ear: development of an improved analog model.
    Goode RL; Killion M; Nakamura K; Nishihara S
    Am J Otol; 1994 Mar; 15(2):145-54. PubMed ID: 8172293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Vibrations of the human tympanic membrane measured with Laser Doppler Vibrometer].
    Szymański M; Rusinek R; Zadrozniak M; Warmiński J; Morshed K
    Otolaryngol Pol; 2009; 63(2):182-5. PubMed ID: 19681493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human temporal bone study of stapes footplate movement.
    Heiland KE; Goode RL; Asai M; Huber AM
    Am J Otol; 1999 Jan; 20(1):81-6. PubMed ID: 9918179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling.
    Dai C; Cheng T; Wood MW; Gan RZ
    Hear Res; 2007 Aug; 230(1-2):24-33. PubMed ID: 17517484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does prosthesis head size affect vibration transmission in ossiculoplasty?
    Bance M; Campos A; Wong L; Morris DP; van Wijhe R
    Otolaryngol Head Neck Surg; 2007 Jul; 137(1):70-3. PubMed ID: 17599568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of visualization of structures in the middle ear via Tos modified canal wall-up mastoidectomy versus classic canal wall-up and canal wall-down mastoidectomies.
    Uzun C; Kutoglu T
    Int J Pediatr Otorhinolaryngol; 2007 Jun; 71(6):851-6. PubMed ID: 17368815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tympanic membrane collagen fibers: a key to high-frequency sound conduction.
    O'Connor KN; Tam M; Blevins NH; Puria S
    Laryngoscope; 2008 Mar; 118(3):483-90. PubMed ID: 18091335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Silastic sheeting over the round window niche on sound transmission in the intact human middle ear.
    Alian WA; Majdalawieh OF; Van Wijhe RG; Ejnell H; Bance M
    J Otolaryngol Head Neck Surg; 2012 Feb; 41(1):1-7. PubMed ID: 22498261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A randomized, blinded study of canal wall up versus canal wall down mastoidectomy determining the differences in viewing middle ear anatomy and pathology.
    Hulka GF; McElveen JT
    Am J Otol; 1998 Sep; 19(5):574-8. PubMed ID: 9752963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser Doppler vibrometric assessment of middle ear motion in Thiel-embalmed heads.
    Stieger C; Candreia C; Kompis M; Herrmann G; Pfiffner F; Widmer D; Arnold A
    Otol Neurotol; 2012 Apr; 33(3):311-8. PubMed ID: 22377645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wideband energy reflectance measurements of ossicular chain discontinuity and repair in human temporal bone.
    Feeney MP; Grant IL; Mills DM
    Ear Hear; 2009 Aug; 30(4):391-400. PubMed ID: 19424071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equivalent noise level generated by drilling onto the ossicular chain as measured by laser Doppler vibrometry: a temporal bone study.
    Jiang D; Bibas A; Santuli C; Donnelly N; Jeronimidis G; O'Connor AF
    Laryngoscope; 2007 Jun; 117(6):1040-5. PubMed ID: 17545867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning laser Doppler vibrometry of the middle ear ossicles.
    Ball GR; Huber A; Goode RL
    Ear Nose Throat J; 1997 Apr; 76(4):213-8, 220, 222. PubMed ID: 9127520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of the incudo-malleolar joint to middle-ear sound transmission.
    Gerig R; Ihrle S; Röösli C; Dalbert A; Dobrev I; Pfiffner F; Eiber A; Huber AM; Sim JH
    Hear Res; 2015 Sep; 327():218-26. PubMed ID: 26209186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incudal folds and epitympanic aeration.
    Palva T; Ramsay H
    Am J Otol; 1996 Sep; 17(5):700-8. PubMed ID: 8892564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraoperative assessment of ossicular fixation.
    Peacock J; Dirckx J; von Unge M
    Hear Res; 2016 Oct; 340():99-106. PubMed ID: 27034152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic-structural coupled finite element analysis for sound transmission in human ear--pressure distributions.
    Gan RZ; Sun Q; Feng B; Wood MW
    Med Eng Phys; 2006 Jun; 28(5):395-404. PubMed ID: 16122964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.