These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11241199)

  • 1. Apoptosis during coronary artery orifice development in the chick embryo.
    Velkey JM; Bernanke DH
    Anat Rec; 2001 Mar; 262(3):310-7. PubMed ID: 11241199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning electron microscopy substantiates histology in showing the inadequacy of the existing theories on the development of the proximal coronary arteries and their connections with the arterial trunks.
    Bogers AJ; Gittenberger-de Groot AC; Dubbeldam JA; Huysmans HA
    Acta Morphol Neerl Scand; 1988-1989; 26(4):225-37. PubMed ID: 3270975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth?
    Bogers AJ; Gittenberger-de Groot AC; Poelmann RE; Péault BM; Huysmans HA
    Anat Embryol (Berl); 1989; 180(5):437-41. PubMed ID: 2619086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo.
    Waldo KL; Willner W; Kirby ML
    Am J Anat; 1990 Jun; 188(2):109-20. PubMed ID: 2375277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart.
    Tian X; Hu T; He L; Zhang H; Huang X; Poelmann RE; Liu W; Yang Z; Yan Y; Pu WT; Zhou B
    PLoS One; 2013; 8(11):e80857. PubMed ID: 24278332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coronary artery and orifice development is associated with proper timing of epicardial outgrowth and correlated Fas-ligand-associated apoptosis patterns.
    Eralp I; Lie-Venema H; DeRuiter MC; van den Akker NM; Bogers AJ; Mentink MM; Poelmann RE; Gittenberger-de Groot AC
    Circ Res; 2005 Mar; 96(5):526-34. PubMed ID: 15705966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the coronary blood supply: changing concepts and current ideas.
    Bernanke DH; Velkey JM
    Anat Rec; 2002 Aug; 269(4):198-208. PubMed ID: 12209558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of the cardiac neural crest with development of the coronary arteries in the chick embryo.
    Waldo KL; Kumiski DH; Kirby ML
    Anat Rec; 1994 Jul; 239(3):315-31. PubMed ID: 7943763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal and tissue specific distribution of apoptosis in the developing chick heart.
    Cheng G; Wessels A; Gourdie RG; Thompson RP
    Dev Dyn; 2002 Jan; 223(1):119-33. PubMed ID: 11803575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of coronary arteries sprouting from the primitive aortic sinus wall of the chick embryo.
    Aikawa E; Kawano J
    Experientia; 1982 Jul; 38(7):816-8. PubMed ID: 7106251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CXCL12/CXCR4 Axis Plays a Critical Role in Coronary Artery Development.
    Ivins S; Chappell J; Vernay B; Suntharalingham J; Martineau A; Mohun TJ; Scambler PJ
    Dev Cell; 2015 May; 33(4):455-68. PubMed ID: 26017770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VEGF-C and aortic cardiomyocytes guide coronary artery stem development.
    Chen HI; Poduri A; Numi H; Kivela R; Saharinen P; McKay AS; Raftrey B; Churko J; Tian X; Zhou B; Wu JC; Alitalo K; Red-Horse K
    J Clin Invest; 2014 Nov; 124(11):4899-914. PubMed ID: 25271623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoptosis is required for the proper formation of the ventriculo-arterial connections.
    Watanabe M; Jafri A; Fisher SA
    Dev Biol; 2001 Dec; 240(1):274-88. PubMed ID: 11784063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coronary stem development in wild-type and Tbx1 null mouse hearts.
    Théveniau-Ruissy M; Pérez-Pomares JM; Parisot P; Baldini A; Miquerol L; Kelly RG
    Dev Dyn; 2016 Apr; 245(4):445-59. PubMed ID: 26708418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inadequacy of existing theories on development of the proximal coronary arteries and their connexions with the arterial trunks.
    Bogers AJ; Gittenberger-de Groot AC; Dubbeldam JA; Huysmans HA
    Int J Cardiol; 1988 Jul; 20(1):117-23. PubMed ID: 3403075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibition of coronary development is preceded by a decrease in myocyte proliferation and an increase in cardiac apoptosis.
    Ivnitski I; Elmaoued R; Walker MK
    Teratology; 2001 Oct; 64(4):201-12. PubMed ID: 11598926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into coronary artery development in model of maternal protein restriction in mice.
    Silva-Junior GO; Aguila MB; Mandarim-de-Lacerda CA
    Anat Rec (Hoboken); 2011 Oct; 294(10):1757-64. PubMed ID: 21901846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation.
    Hood LC; Rosenquist TH
    Anat Rec; 1992 Oct; 234(2):291-300. PubMed ID: 1416113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formal genesis of the outflow tracts of the heart revisited: previous works in the light of recent observations.
    Okamoto N; Akimoto N; Hidaka N; Shoji S; Sumida H
    Congenit Anom (Kyoto); 2010 Sep; 50(3):141-58. PubMed ID: 20608949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of active Notch1 in avian coronary development.
    Yang K; Doughman YQ; Karunamuni G; Gu S; Yang YC; Bader DM; Watanabe M
    Dev Dyn; 2009 Jan; 238(1):162-70. PubMed ID: 19097050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.