BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11243263)

  • 41. Fate of genetically-engineered bacteria in activated sludge microcosms.
    Dwyer DF; Hooper SW; Rojo F; Timmis KN
    Schriftenr Ver Wasser Boden Lufthyg; 1988; 78():267-76. PubMed ID: 3074483
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pyrene degradation by Pseudomonas sp. and Burkholderia sp. enriched from coking wastewater sludge.
    Deng L; Ren Y; Wei C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(13):1984-91. PubMed ID: 22870995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measurement of minimum substrate concentration (Smin) in a recycling fermentor and its prediction from the kinetic parameters of Pseudomonas strain B13 from batch and chemostat cultures.
    Tros ME; Bosma TN; Schraa G; Zehnder AJ
    Appl Environ Microbiol; 1996 Oct; 62(10):3655-61. PubMed ID: 8967775
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unusual integrase gene expression on the clc genomic island in Pseudomonas sp. strain B13.
    Sentchilo V; Ravatn R; Werlen C; Zehnder AJ; van der Meer JR
    J Bacteriol; 2003 Aug; 185(15):4530-8. PubMed ID: 12867462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mineralization of 2-chloro- and 2,5-dichlorobiphenyl by Pseudomonas sp. strain UCR2.
    Hickey WJ; Brenner V; Focht DD
    FEMS Microbiol Lett; 1992 Nov; 77(1-3):175-80. PubMed ID: 1459405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on endophytic colonization ability of two upland rice endophytes, Rhizobium sp. and Burkholderia sp., using green fluorescent protein reporter.
    Singh MK; Kushwaha C; Singh RK
    Curr Microbiol; 2009 Sep; 59(3):240-3. PubMed ID: 19484303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biphenyl degradation kinetics by Burkholderia xenovorans LB400 in two-phase partitioning bioreactors.
    Rehmann L; Daugulis AJ
    Chemosphere; 2006 May; 63(6):972-9. PubMed ID: 16310831
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Three-Species Consortium of Genetically Improved Strains Cupriavidus necator RW112, Burkholderia xenovorans RW118, and Pseudomonas pseudoalcaligenes RW120 Grows with Technical Polychlorobiphenyl, Aroclor 1242.
    Hernández-Sánchez V; Lang E; Wittich RM
    Front Microbiol; 2013; 4():90. PubMed ID: 23658554
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Change in bacterial community during biodegradation of aniline.
    Tani K; Masuhara M; Welikala N; Yamaguchi N; Nasu M
    J Appl Microbiol; 1998 May; 84(5):859-64. PubMed ID: 9729107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of 16S-rRNA to investigate microbial population dynamics during biodegradation of toluene and phenol by a binary culture.
    Rogers JB; DuTeau NM; Reardon KF
    Biotechnol Bioeng; 2000 Nov; 70(4):436-45. PubMed ID: 11005926
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Integrative Conjugative Element
    Obi CC; Vayla S; de Gannes V; Berres ME; Walker J; Pavelec D; Hyman J; Hickey WJ
    Front Microbiol; 2018; 9():1532. PubMed ID: 30050515
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [The use of the [13C]/[12C] ratio for the assay of the microbial oxidation of hydrocarbons].
    Ziakun AM; Kosheleva IA; Zakharchenko VN; Kudriavtseva AI; Peshenko VA; Filonov AE; Boronin AM
    Mikrobiologiia; 2003; 72(5):666-71. PubMed ID: 14679906
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of physicochemical effects on the microbial degradation of chlorinated biphenyls.
    Havel J; Reineke W
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):914-9. PubMed ID: 7576558
    [TBL] [Abstract][Full Text] [Related]  

  • 54. From PCBs to highly toxic metabolites by the biphenyl pathway.
    Cámara B; Herrera C; González M; Couve E; Hofer B; Seeger M
    Environ Microbiol; 2004 Aug; 6(8):842-50. PubMed ID: 15250886
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates.
    Kim S; Picardal FW
    FEMS Microbiol Lett; 2000 Apr; 185(2):225-9. PubMed ID: 10754252
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds.
    Kaschabek SR; Reineke W
    Arch Microbiol; 1992; 158(6):412-7. PubMed ID: 1482270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Perchlorate degradation using an indigenous microbial consortium predominantly Burkholderia sp.
    Ghosh A; Pakshirajan K; Ghosh PK; Sahoo NK
    J Hazard Mater; 2011 Mar; 187(1-3):133-9. PubMed ID: 21255920
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Degradation of isomeric monochlorobenzoates and 2,4-dichlorophenoxyacetic acid by a constructed Pseudomonas sp.
    Sahasrabudhe AV; Modi VV
    Appl Microbiol Biotechnol; 1991 Jan; 34(4):556-7. PubMed ID: 1367232
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron.
    Breugelmans P; Barken KB; Tolker-Nielsen T; Hofkens J; Dejonghe W; Springael D
    FEMS Microbiol Ecol; 2008 May; 64(2):271-82. PubMed ID: 18373685
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.
    Bacosa HP; Suto K; Inoue C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):835-46. PubMed ID: 23485232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.