These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 11243263)

  • 61. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.
    Bacosa HP; Suto K; Inoue C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):835-46. PubMed ID: 23485232
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange.
    Rubio MA; Engesser KH; Knackmuss HJ
    Arch Microbiol; 1986 Jul; 145(2):116-22. PubMed ID: 3767567
    [TBL] [Abstract][Full Text] [Related]  

  • 63. BphK shows dechlorination activity against 4-chlorobenzoate, an end product of bph-promoted degradation of PCBs.
    Gilmartin N; Ryan D; Sherlock O; Dowling D
    FEMS Microbiol Lett; 2003 May; 222(2):251-5. PubMed ID: 12770715
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biodegradation of biphenyl and 2-chlorobiphenyl by a Pseudomonas sp. KM-04 isolated from PCBs-contaminated coal mine soil.
    Nam IH; Chon CM; Jung KY; Kim JG
    Bull Environ Contam Toxicol; 2014 Jul; 93(1):89-94. PubMed ID: 24797535
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phospholipid compositional changes of five pseudomonad archetypes grown with and without toluene.
    Fang J; Barcelona MJ; Alvarez PJ
    Appl Microbiol Biotechnol; 2000 Sep; 54(3):382-9. PubMed ID: 11030576
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth.
    Simonetti E; Roberts IN; Montecchia MS; Gutierrez-Boem FH; Gomez FM; Ruiz JA
    Microbiol Res; 2018 Jan; 206():50-59. PubMed ID: 29146260
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cloning of Pseudomonas sp. strain CBS3 genes specifying dehalogenation of 4-chlorobenzoate.
    Savard P; Péloquin L; Sylvestre M
    J Bacteriol; 1986 Oct; 168(1):81-5. PubMed ID: 3759912
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of 4-chlorobenzoyl-coenzyme A as intermediate in the dehalogenation catalyzed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3.
    Löffler F; Müller R
    FEBS Lett; 1991 Sep; 290(1-2):224-6. PubMed ID: 1915880
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Involvement of plasmid in degradation of pentachlorophenol by Pseudomonas sp. from a chemostat.
    Thakur IS; Verma PK; Upadhaya KC
    Biochem Biophys Res Commun; 2001 Aug; 286(1):109-13. PubMed ID: 11485315
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evidence that operons tcb, tfd, and clc encode maleylacetate reductase, the fourth enzyme of the modified ortho pathway.
    Kasberg T; Daubaras DL; Chakrabarty AM; Kinzelt D; Reineke W
    J Bacteriol; 1995 Jul; 177(13):3885-9. PubMed ID: 7601858
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dioxygenation of the biphenyl dioxygenation product.
    Overwin H; González M; Méndez V; Seeger M; Wray V; Hofer B
    Appl Environ Microbiol; 2012 Jun; 78(12):4529-32. PubMed ID: 22504819
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metabolism of Doubly para-Substituted Hydroxychlorobiphenyls by Bacterial Biphenyl Dioxygenases.
    Pham TT; Sondossi M; Sylvestre M
    Appl Environ Microbiol; 2015 Jul; 81(14):4860-72. PubMed ID: 25956777
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genomic and functional analyses of the 2-aminophenol catabolic pathway and partial conversion of its substrate into picolinic acid in Burkholderia xenovorans LB400.
    Chirino B; Strahsburger E; Agulló L; González M; Seeger M
    PLoS One; 2013; 8(10):e75746. PubMed ID: 24124510
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of vitamins on the aerobic degradation of 2-chlorophenol, 4-chlorophenol, and 4-chlorobiphenyl.
    Kafkewitz D; Fava F; Armenante PM
    Appl Microbiol Biotechnol; 1996 Nov; 46(4):414-21. PubMed ID: 8987730
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Metabolism of pyrene through phthalic acid pathway by enriched bacterial consortium composed of Pseudomonas, Burkholderia, and Rhodococcus (PBR).
    Vaidya S; Jain K; Madamwar D
    3 Biotech; 2017 May; 7(1):29. PubMed ID: 28401465
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Degradation of chlorobenzenes at nanomolar concentrations by Burkholderia sp. strain PS14 in liquid cultures and in soil.
    Rapp P; Timmis KN
    Appl Environ Microbiol; 1999 Jun; 65(6):2547-52. PubMed ID: 10347041
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Remarkable ability of Pandoraea pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids.
    Pham TT; Tu Y; Sylvestre M
    Appl Environ Microbiol; 2012 May; 78(10):3560-70. PubMed ID: 22427498
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating.
    Adams RH; Huang CM; Higson FK; Brenner V; Focht DD
    Appl Environ Microbiol; 1992 Feb; 58(2):647-54. PubMed ID: 1610186
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular basis of a bacterial consortium: interspecies catabolism of atrazine.
    de Souza ML; Newcombe D; Alvey S; Crowley DE; Hay A; Sadowsky MJ; Wackett LP
    Appl Environ Microbiol; 1998 Jan; 64(1):178-84. PubMed ID: 16349478
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transformation of Low Concentrations of 3-Chlorobenzoate by Pseudomonas sp. Strain B13: Kinetics and Residual Concentrations.
    Tros ME; Schraa G; Zehnder A
    Appl Environ Microbiol; 1996 Feb; 62(2):437-42. PubMed ID: 16535232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.