These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11243460)

  • 1. Characterization of air-coupled ultrasound transducers in the frequency range 40 kHz-2 mHz using light diffraction tomography.
    Almqvist M; Holm A; Persson HW; Lindström K
    Ultrasonics; 2000 Jan; 37(8):565-75. PubMed ID: 11243460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of micromachined ultrasonic transducers using light diffraction tomography.
    Almqvist M; Törndahl M; Nilsson M; Lilliehorn T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2298-302. PubMed ID: 16463495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reliability study of light refractive tomography utilized for noninvasive measurement of ultrasound pressure fields.
    Chen L; Rupitsch SJ; Lerch R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):915-27. PubMed ID: 22622976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution light diffraction tomography: nearfield measurements of 10 MHz continuous wave ultrasound.
    Almqvist M; Holm A; Jansson T; Persson HW; Lindstrom K
    Ultrasonics; 1999 Jun; 37(5):343-53. PubMed ID: 10499805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-frequency ultrasound permeates the human thorax and lung: a novel approach to non-invasive monitoring.
    Rueter D; Hauber HP; Droeman D; Zabel P; Uhlig S
    Ultraschall Med; 2010 Feb; 31(1):53-62. PubMed ID: 19582661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New symmetric reflector ultrasonic transducers (SRUT).
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2311-9. PubMed ID: 19942517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of pulsed ultrasound using optical detection in Raman-Nath regime.
    Jia L; Xue B; Chen S; Wu H; Yang X; Zhai J; Zeng Z
    Rev Sci Instrum; 2018 Aug; 89(8):084906. PubMed ID: 30184622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the ultrasound transducer bandwidth on selection of the complementary Golay bit code length.
    Nowicki A; Trots I; Lewin PA; Secomski W; Tymkiewicz R
    Ultrasonics; 2007 Dec; 47(1-4):64-73. PubMed ID: 17825338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer functions of US transducers for harmonic imaging and bubble responses.
    van Neer PL; Matte G; Sijl J; Borsboom JM; de Jong N
    Ultrasonics; 2007 Nov; 46(4):336-40. PubMed ID: 17631929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airborne ultrasonic phased arrays using ferroelectrets: a new fabrication approach.
    Ealo JL; Camacho JJ; Fritsch C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):848-58. PubMed ID: 19406714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 35 MHz/105 MHz Dual-Element Focused Transducer for Intravascular Ultrasound Tissue Imaging Using the Third Harmonic.
    Lee J; Moon JY; Chang JH
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible piezoelectric transducer for ultrasonic inspection of non-planar components.
    Bowen CR; Bradley LR; Almond DP; Wilcox PD
    Ultrasonics; 2008 Sep; 48(5):367-75. PubMed ID: 18348894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging.
    Hou Y; Kim JS; Huang SW; Ashkenazi S; Guo LJ; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1867-77. PubMed ID: 18986929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental characterization of fundamental and second harmonic beams for a high-frequency ultrasound transducer.
    Cherin EW; Poulsen JK; van der Steen AF; Lum P; Foster FS
    Ultrasound Med Biol; 2002 May; 28(5):635-46. PubMed ID: 12079700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials.
    Satyanarayan L; Haberman MR; Berthelot YH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2343-55. PubMed ID: 20889422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The output of pulse-echo ultrasound equipment: a survey of powers, pressures and intensities.
    Duck FA; Starritt HC; Aindow JD; Perkins MA; Hawkins AJ
    Br J Radiol; 1985 Oct; 58(694):989-1001. PubMed ID: 3916078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflector-based phase calibration of ultrasound transducers.
    van Neer PL; Vos HJ; de Jong N
    Ultrasonics; 2011 Jan; 51(1):1-6. PubMed ID: 20537364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transducer characterization from pressure amplitude distribution measurements using a Kalman filter as parameter estimation algorithm.
    Linssen FM; Hoeks AP
    Ultrason Imaging; 1990 Oct; 12(4):309-23. PubMed ID: 2256230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer.
    Lin KW; Hall TL; Xu Z; Cain CA
    Ultrasound Med Biol; 2015 Aug; 41(8):2148-60. PubMed ID: 25929995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.