These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11243809)

  • 1. Calcium-dependent structural changes in scallop heavy meromyosin.
    Stafford WF; Jacobsen MP; Woodhead J; Craig R; O'Neall-Hennessey E; Szent-Györgyi AG
    J Mol Biol; 2001 Mar; 307(1):137-47. PubMed ID: 11243809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes induced in scallop heavy meromyosin molecules by Ca2+ and ATP.
    Frado LY; Craig R
    J Muscle Res Cell Motil; 1992 Aug; 13(4):436-46. PubMed ID: 1401039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of the two heads of scallop (Argopecten irradians) heavy meromyosin with actin: influence of calcium and nucleotides.
    Nyitrai M; Szent-Györgyi AG; Geeves MA
    Biochem J; 2003 Mar; 370(Pt 3):839-48. PubMed ID: 12441001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperativity and regulation of scallop myosin and myosin fragments.
    Kalabokis VN; Szent-Györgyi AG
    Biochemistry; 1997 Dec; 36(50):15834-40. PubMed ID: 9398315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of scallop myosin by calcium. Cooperativity and the "off" state.
    Kalabokis VN; Szent-Györgyi AG
    Adv Exp Med Biol; 1998; 453():235-40. PubMed ID: 9889834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in myosin and heavy meromyosin from chicken gizzard associated with phosphorylation.
    Nag S; Suzuki H; Sosinski J; Seidel JC
    Prog Clin Biol Res; 1987; 245():91-108. PubMed ID: 2960980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic interactions play a role in the regulatory mechanism of scallop heavy meromyosin.
    Nyitrai M; Stafford WF; Szent-Györgyi AG; Geeves MA
    Biophys J; 2003 Aug; 85(2):1053-62. PubMed ID: 12885652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rigor configuration of smooth muscle heavy meromyosin trapped by a zero-length cross-linker.
    Onishi H; Fujiwara K
    Biochemistry; 1990 Mar; 29(12):3013-23. PubMed ID: 2140049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic model of the co-operative binding of calcium and ADP to scallop (Argopecten irradians) heavy meromyosin.
    Nyitrai M; Szent-Györgyi AG; Geeves MA
    Biochem J; 2002 Jul; 365(Pt 1):19-30. PubMed ID: 12071838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay.
    Katayama E
    J Mol Biol; 1998 May; 278(2):349-67. PubMed ID: 9571057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state.
    Burgess SA; Yu S; Walker ML; Hawkins RJ; Chalovich JM; Knight PJ
    J Mol Biol; 2007 Oct; 372(5):1165-78. PubMed ID: 17707861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conformational transition in gizzard heavy meromyosin involving the head-tail junction, resulting in changes in sedimentation coefficient, ATPase activity, and orientation of heads.
    Suzuki H; Stafford WF; Slayter HS; Seidel JC
    J Biol Chem; 1985 Nov; 260(27):14810-7. PubMed ID: 2932450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amounts of adenosine di- and triphosphates bound to H-meromyosin and the adenosinetriphosphatase activity of the H-meromyosin-F-actin-relaxing protein system in the presence and absence of calcium ions. The physiological functions of the two routes of myosin adenosinetriphosphatase in muscle contraction.
    Inoue A; Tonomura Y
    J Biochem; 1975 Jul; 78(1):83-92. PubMed ID: 127789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gross structural features of myosin head during sliding movement of actin as studied by quick-freeze deep-etch electron microscopy.
    Katayama E
    Adv Exp Med Biol; 1993; 332():47-54; discussion 54-5. PubMed ID: 8109359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between two myosin heads in acto-smooth muscle heavy meromyosin rigor complex.
    Onishi H
    Adv Exp Med Biol; 1993; 332():217-21; discussion 221-3. PubMed ID: 8109335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2.
    Wendt T; Taylor D; Trybus KM; Taylor K
    Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4361-6. PubMed ID: 11287639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative rigor binding of myosin to actin is a function of F-actin structure.
    Orlova A; Egelman EH
    J Mol Biol; 1997 Feb; 265(5):469-74. PubMed ID: 9048941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification, crystallization and preliminary X-ray crystallographic analysis of squid heavy meromyosin.
    O'Neall-Hennessey E; Reshetnikova L; Senthil Kumar VS; Robinson H; Szent-Györgyi AG; Cohen C
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Mar; 69(Pt 3):248-52. PubMed ID: 23519797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmental flexibility and head-head interaction in scallop myosin. A study using saturation transfer electron paramagnetic resonance spectroscopy.
    Wells C; Bagshaw CR
    J Mol Biol; 1983 Feb; 164(1):137-57. PubMed ID: 6302270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adiabatic compressibility of myosin subfragment-1 and heavy meromyosin with or without nucleotide.
    Tamura Y; Suzuki N; Mihashi K
    Biophys J; 1993 Nov; 65(5):1899-905. PubMed ID: 8298019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.