BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11243823)

  • 1. Solution structure and dynamics of the central CCP module pair of a poxvirus complement control protein.
    Henderson CE; Bromek K; Mullin NP; Smith BO; Uhrín D; Barlow PN
    J Mol Biol; 2001 Mar; 307(1):323-39. PubMed ID: 11243823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central modules of the vaccinia virus complement control protein are not in extensive contact.
    Kirkitadze MD; Henderson C; Price NC; Kelly SM; Mullin NP; Parkinson J; Dryden DT; Barlow PN
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):167-75. PubMed ID: 10548547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR studies of a viral protein that mimics the regulators of complement activation.
    Wiles AP; Shaw G; Bright J; Perczel A; Campbell ID; Barlow PN
    J Mol Biol; 1997 Sep; 272(2):253-65. PubMed ID: 9299352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in backbone dynamics of two homologous bacterial albumin-binding modules: implications for binding specificity and bacterial adaptation.
    Johansson MU; Nilsson H; Evenäs J; Forsén S; Drakenberg T; Björck L; Wikström M
    J Mol Biol; 2002 Mar; 316(5):1083-99. PubMed ID: 11884146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D model for the measles virus receptor CD46 based on homology modeling, Monte Carlo simulations, and hemagglutinin binding studies.
    Mumenthaler C; Schneider U; Buchholz CJ; Koller D; Braun W; Cattaneo R
    Protein Sci; 1997 Mar; 6(3):588-97. PubMed ID: 9070441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR structure and backbone dynamics of a concatemer of epidermal growth factor homology modules of the human low-density lipoprotein receptor.
    Kurniawan ND; Aliabadizadeh K; Brereton IM; Kroon PA; Smith R
    J Mol Biol; 2001 Aug; 311(2):341-56. PubMed ID: 11478865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of the glycosylated second type 2 module of fibronectin.
    Sticht H; Pickford AR; Potts JR; Campbell ID
    J Mol Biol; 1998 Feb; 276(1):177-87. PubMed ID: 9514732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale modelling as a route to multiple surface comparisons of the CCP module family.
    Soares DC; Gerloff DL; Syme NR; Coulson AF; Parkinson J; Barlow PN
    Protein Eng Des Sel; 2005 Aug; 18(8):379-88. PubMed ID: 15976010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary conserved rigid module-domain interactions can be detected at the sequence level: the examples of complement and blood coagulation proteases.
    Gaboriaud C; Rossi V; Fontecilla-Camps JC; Arlaud GJ
    J Mol Biol; 1998 Sep; 282(2):459-70. PubMed ID: 9735300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of a pair of fibronectin type 1 modules with fibrin binding activity.
    Williams MJ; Phan I; Harvey TS; Rostagno A; Gold LI; Campbell ID
    J Mol Biol; 1994 Jan; 235(4):1302-11. PubMed ID: 8308892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backbone dynamics of complement control protein (CCP) modules reveals mobility in binding surfaces.
    O'Leary JM; Bromek K; Black GM; Uhrinova S; Schmitz C; Wang X; Krych M; Atkinson JP; Uhrin D; Barlow PN
    Protein Sci; 2004 May; 13(5):1238-50. PubMed ID: 15096630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The solution structure of the C-terminal modular pair from Clostridium perfringens mu-toxin reveals a noncellulosomal dockerin module.
    Chitayat S; Adams JJ; Furness HS; Bayer EA; Smith SP
    J Mol Biol; 2008 Sep; 381(5):1202-12. PubMed ID: 18602403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independently melting modules and highly structured intermodular junctions within complement receptor type 1.
    Kirkitadze MD; Krych M; Uhrin D; Dryden DT; Smith BO; Cooper A; Wang X; Hauhart R; Atkinson JP; Barlow PN
    Biochemistry; 1999 Jun; 38(22):7019-31. PubMed ID: 10353813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure and backbone dynamics of the defunct domain of calcium vector protein.
    Théret I; Baladi S; Cox JA; Gallay J; Sakamoto H; Craescu CT
    Biochemistry; 2001 Nov; 40(46):13888-97. PubMed ID: 11705378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interdomain contact regions and angles between adjacent short consensus repeat domains.
    Lehtinen MJ; Meri S; Jokiranta TS
    J Mol Biol; 2004 Dec; 344(5):1385-96. PubMed ID: 15561150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase.
    Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP
    J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermodule cooperativity in the structure and dynamics of consecutive complement control modules in human C1r: structural biology.
    Láng A; Szilágyi K; Major B; Gál P; Závodszky P; Perczel A
    FEBS J; 2010 Oct; 277(19):3986-98. PubMed ID: 20796027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of the N-terminal F1 module pair from human fibronectin.
    Potts JR; Bright JR; Bolton D; Pickford AR; Campbell ID
    Biochemistry; 1999 Jun; 38(26):8304-12. PubMed ID: 10387076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermodular linker flexibility revealed from crystal structures of adjacent cellulosomal cohesins of Acetivibrio cellulolyticus.
    Noach I; Frolow F; Alber O; Lamed R; Shimon LJ; Bayer EA
    J Mol Biol; 2009 Aug; 391(1):86-97. PubMed ID: 19501595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural independence of ligand-binding modules five and six of the LDL receptor.
    North CL; Blacklow SC
    Biochemistry; 1999 Mar; 38(13):3926-35. PubMed ID: 10194304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.