These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 11243835)
1. Phenanthroline-Cu(II) cleavage as a probe of rRNA structure. Muth GW; Hill WE Methods; 2001 Mar; 23(3):218-32. PubMed ID: 11243835 [TBL] [Abstract][Full Text] [Related]
2. Comparison of rRNA cleavage by complementary 1,10-phenanthroline-Cu(II)- and EDTA-Fe(II)-derivatized oligonucleotides. Bowen WS; Hill WE; Lodmell JS Methods; 2001 Nov; 25(3):344-50. PubMed ID: 11860288 [TBL] [Abstract][Full Text] [Related]
3. Cleavage of a 23S rRNA pseudoknot by phenanthroline-Cu(II). Muth GW; Thompson CM; Hill WE Nucleic Acids Res; 1999 Apr; 27(8):1906-11. PubMed ID: 10101200 [TBL] [Abstract][Full Text] [Related]
4. Regions of 16S ribosomal RNA proximal to transfer RNA bound at the P-site of Escherichia coli ribosomes. Bullard JM; van Waes MA; Bucklin DJ; Rice MJ; Hill WE Biochemistry; 1998 Feb; 37(5):1350-6. PubMed ID: 9477963 [TBL] [Abstract][Full Text] [Related]
5. Density functional theory studies on copper phenanthroline complexes. Robertazzi A; Magistrato A; de Hoog P; Carloni P; Reedijk J Inorg Chem; 2007 Jul; 46(15):5873-81. PubMed ID: 17585756 [TBL] [Abstract][Full Text] [Related]
6. Structures, spectra, and DNA-binding properties of mixed ligand copper(II) complexes of iminodiacetic acid: the novel role of diimine co-ligands on DNA conformation and hydrolytic and oxidative double strand DNA cleavage. Selvakumar B; Rajendiran V; Uma Maheswari P; Stoeckli-Evans H; Palaniandavar M J Inorg Biochem; 2006 Mar; 100(3):316-30. PubMed ID: 16406550 [TBL] [Abstract][Full Text] [Related]
7. Positions in the 30S ribosomal subunit proximal to the 790 loop as determined by phenanthroline cleavage. Muth GW; Hennelly SP; Hill WE RNA; 1999 Jul; 5(7):856-64. PubMed ID: 10411129 [TBL] [Abstract][Full Text] [Related]
8. Structural motifs in ribosomal RNAs: implications for RNA design and genomics. Zorn J; Gan HH; Shiffeldrim N; Schlick T Biopolymers; 2004 Feb; 73(3):340-7. PubMed ID: 14755570 [TBL] [Abstract][Full Text] [Related]
9. Systematic deletion of rRNAs for investigating ribosome architecture and function. Kitahara K; Sato NS; Namba N; Yokota T; Tsujimura T; Suzuki T Nucleic Acids Symp Ser (Oxf); 2006; (50):287-8. PubMed ID: 17150930 [TBL] [Abstract][Full Text] [Related]
10. Following the dynamics of changes in solvent accessibility of 16 S and 23 S rRNA during ribosomal subunit association using synchrotron-generated hydroxyl radicals. Nguyenle T; Laurberg M; Brenowitz M; Noller HF J Mol Biol; 2006 Jun; 359(5):1235-48. PubMed ID: 16725154 [TBL] [Abstract][Full Text] [Related]
11. Cleavage of 16S rRNA within the ribosome by mRNA modified in the A-site codon with phenanthroline-Cu(II). Bucklin DJ; van Waes MA; Bullard JM; Hill WE Biochemistry; 1997 Jul; 36(26):7951-7. PubMed ID: 9201941 [TBL] [Abstract][Full Text] [Related]
12. Identification of ribosome-ligand interactions using cleavage reagents. Hill WE; Bucklin DJ; Bullard JM; Galbralth AL; Jammi NV; Rettberg CC; Sawyer BS; van Waes MA Biochem Cell Biol; 1995; 73(11-12):1033-9. PubMed ID: 8722018 [TBL] [Abstract][Full Text] [Related]
13. DNA cleavage in red light promoted by copper(II) complexes of alpha-amino acids and photoactive phenanthroline bases. Patra AK; Bhowmick T; Ramakumar S; Nethaji M; Chakravarty AR Dalton Trans; 2008 Dec; (48):6966-76. PubMed ID: 19050783 [TBL] [Abstract][Full Text] [Related]
14. Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly. Liiv A; Remme J J Mol Biol; 2004 Sep; 342(3):725-41. PubMed ID: 15342233 [TBL] [Abstract][Full Text] [Related]
15. [Study of ribosome structure using the biochemical methods: judgment day]. Sergiev PV; Dontsova OA; Bogdanov AA Mol Biol (Mosk); 2001; 35(4):559-83. PubMed ID: 11524944 [TBL] [Abstract][Full Text] [Related]
16. Copper(II) complexes of 1,10-phenanthroline-derived ligands: studies on DNA binding properties and nuclease activity. Hirohama T; Kuranuki Y; Ebina E; Sugizaki T; Arii H; Chikira M; Tamil Selvi P; Palaniandavar M J Inorg Biochem; 2005 May; 99(5):1205-19. PubMed ID: 15833344 [TBL] [Abstract][Full Text] [Related]
17. [Region of intermolecular complementarity in Escherichia coli 16S rRNA, mRNA, and tRNA molecules]. Shabalina SA Mol Biol (Mosk); 2002; 36(3):460-5. PubMed ID: 12068631 [TBL] [Abstract][Full Text] [Related]
18. Double molecular mimicry in Escherichia coli: binding of ribosomal protein L20 to its two sites in mRNA is similar to its binding to 23S rRNA. Guillier M; Allemand F; Dardel F; Royer CA; Springer M; Chiaruttini C Mol Microbiol; 2005 Jun; 56(6):1441-56. PubMed ID: 15916597 [TBL] [Abstract][Full Text] [Related]
19. Optimizing the targeted chemical nuclease activity of 1,10-phenanthroline-copper by ligand modification. Gallagher J; Chen CH; Pan CQ; Perrin DM; Cho YM; Sigman DS Bioconjug Chem; 1996; 7(4):413-20. PubMed ID: 8853454 [TBL] [Abstract][Full Text] [Related]