These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 11244336)
21. Comparison of visual field defects using matrix perimetry and standard achromatic perimetry. Patel A; Wollstein G; Ishikawa H; Schuman JS Ophthalmology; 2007 Mar; 114(3):480-7. PubMed ID: 17123623 [TBL] [Abstract][Full Text] [Related]
22. Detection of glaucoma progression by perimetry and optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma Trial. Öhnell H; Heijl A; Anderson H; Bengtsson B Acta Ophthalmol; 2017 May; 95(3):281-287. PubMed ID: 27778463 [TBL] [Abstract][Full Text] [Related]
23. Perimetric Comparison Between the IMOvifa and Humphrey Field Analyzer. Nishida T; Eslani M; Weinreb RN; Arias J; Vasile C; Mohammadzadeh V; Moghimi S J Glaucoma; 2023 Feb; 32(2):85-92. PubMed ID: 36223309 [TBL] [Abstract][Full Text] [Related]
24. Scanning laser polarimetry of the retinal nerve fiber layer in perimetrically unaffected eyes of glaucoma patients. Reus NJ; Lemij HG Ophthalmology; 2004 Dec; 111(12):2199-203. PubMed ID: 15582074 [TBL] [Abstract][Full Text] [Related]
25. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. Liu S; Lam S; Weinreb RN; Ye C; Cheung CY; Lai G; Lam DS; Leung CK Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7325-31. PubMed ID: 21810975 [TBL] [Abstract][Full Text] [Related]
26. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Sample PA; Medeiros FA; Racette L; Pascual JP; Boden C; Zangwill LM; Bowd C; Weinreb RN Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3381-9. PubMed ID: 16877406 [TBL] [Abstract][Full Text] [Related]
27. Comparison between GDx VCC parameter and achromatic perimetry in glaucoma patients. Iester M; Perdicchi A; De Feo F; Fiesoletti E; Amodeo S; Sanna G; Leonardi A; Calabria G J Glaucoma; 2006 Aug; 15(4):281-5. PubMed ID: 16865003 [TBL] [Abstract][Full Text] [Related]
28. Usefulness of frequency-doubling technology for perimetrically normal eyes of open-angle glaucoma patients with unilateral field loss. Fan X; Wu LL; Ma ZZ; Xiao GG; Liu F Ophthalmology; 2010 Aug; 117(8):1530-7, 1537.e1-2. PubMed ID: 20466428 [TBL] [Abstract][Full Text] [Related]
29. Detection of central visual field defects in early glaucomatous eyes: Comparison of Humphrey and Octopus perimetry. Roberti G; Manni G; Riva I; Holló G; Quaranta L; Agnifili L; Figus M; Giammaria S; Rastelli D; Oddone F PLoS One; 2017; 12(10):e0186793. PubMed ID: 29077730 [TBL] [Abstract][Full Text] [Related]
30. Discriminating ability of Humphrey matrix perimetry in early glaucoma patients. Hong S; Chung W; Hong YJ; Seong GJ Ophthalmologica; 2007; 221(3):195-9. PubMed ID: 17440283 [TBL] [Abstract][Full Text] [Related]
31. Comparison between relative dispersion analysis of high-pass resolution perimetry and standard threshold perimetry. Iester M; Altieri M; Capris P; Zingirian M; Traverso CE Eye (Lond); 2000 Oct; 14 Pt 5():742-6. PubMed ID: 11116696 [TBL] [Abstract][Full Text] [Related]
32. A comparison of global indices between the Medmont Automated Perimeter and the Humphrey Field Analyzer. Landers J; Sharma A; Goldberg I; Graham S Br J Ophthalmol; 2007 Oct; 91(10):1285-7. PubMed ID: 17389740 [TBL] [Abstract][Full Text] [Related]
33. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma. Boland MV; Zhang L; Broman AT; Jampel HD; Quigley HA Ophthalmology; 2008 Feb; 115(2):239-245.e2. PubMed ID: 18082888 [TBL] [Abstract][Full Text] [Related]
34. Evidence for a learning effect in short-wavelength automated perimetry. Wild JM; Kim LS; Pacey IE; Cunliffe IA Ophthalmology; 2006 Feb; 113(2):206-15. PubMed ID: 16458091 [TBL] [Abstract][Full Text] [Related]
35. Identifying "preperimetric" glaucoma in standard automated perimetry visual fields. Asaoka R; Iwase A; Hirasawa K; Murata H; Araie M Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):7814-20. PubMed ID: 25342615 [TBL] [Abstract][Full Text] [Related]
36. Detectability of glaucomatous changes using SAP, FDT, flicker perimetry, and OCT. Nomoto H; Matsumoto C; Takada S; Hashimoto S; Arimura E; Okuyama S; Shimomura Y J Glaucoma; 2009 Feb; 18(2):165-71. PubMed ID: 19225357 [TBL] [Abstract][Full Text] [Related]
37. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma. Artes PH; Hutchison DM; Nicolela MT; LeBlanc RP; Chauhan BC Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2451-7. PubMed ID: 15980235 [TBL] [Abstract][Full Text] [Related]
38. Relationship between Humphrey 30-2 SITA Standard Test, Matrix 30-2 threshold test, and Heidelberg retina tomograph in ocular hypertensive and glaucoma patients. Bozkurt B; Yilmaz PT; Irkec M J Glaucoma; 2008; 17(3):203-10. PubMed ID: 18414106 [TBL] [Abstract][Full Text] [Related]
39. [Comparison of high-pass resolution perimetry and differential light sensitivity perimetry in glaucoma patients]. Kono Y; Maeda M; Yamamoto T; Kitazawa Y Nippon Ganka Gakkai Zasshi; 1993 May; 97(5):644-8. PubMed ID: 8337971 [TBL] [Abstract][Full Text] [Related]