These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1124482)

  • 21. Extracellular magnesium enhances the damage to locomotor networks produced by metabolic perturbation mimicking spinal injury in the neonatal rat spinal cord in vitro.
    Margaryan G; Mladinic M; Mattioli C; Nistri A
    Neuroscience; 2009 Oct; 163(2):669-82. PubMed ID: 19591902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sex differences in the white matter and myelinated nerve fibers of Long-Evans rats.
    Yang S; Li C; Zhang W; Wang W; Tang Y
    Brain Res; 2008 Jun; 1216():16-23. PubMed ID: 18486116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord.
    Buss A; Pech K; Merkler D; Kakulas BA; Martin D; Schoenen J; Noth J; Schwab ME; Brook GA
    Brain; 2005 Feb; 128(Pt 2):356-64. PubMed ID: 15634734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spinal cord injury is accompanied by chronic progressive demyelination.
    Totoiu MO; Keirstead HS
    J Comp Neurol; 2005 Jun; 486(4):373-83. PubMed ID: 15846782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The contribution of activated phagocytes and myelin degeneration to axonal retraction/dieback following spinal cord injury.
    McPhail LT; Stirling DP; Tetzlaff W; Kwiecien JM; Ramer MS
    Eur J Neurosci; 2004 Oct; 20(8):1984-94. PubMed ID: 15450077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light and electron microscopic assessment of progressive atrophy following moderate traumatic brain injury in the rat.
    Rodriguez-Paez AC; Brunschwig JP; Bramlett HM
    Acta Neuropathol; 2005 Jun; 109(6):603-16. PubMed ID: 15877231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Schwann cells transplanted into normal and X-irradiated adult white matter do not migrate extensively and show poor long-term survival.
    Iwashita Y; Fawcett JW; Crang AJ; Franklin RJ; Blakemore WF
    Exp Neurol; 2000 Aug; 164(2):292-302. PubMed ID: 10915568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathology of experimental spinal cord trauma. II. Ultrastructure of axons and myelin.
    Balentine JD
    Lab Invest; 1978 Sep; 39(3):254-66. PubMed ID: 713490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord.
    Guest JD; Rao A; Olson L; Bunge MB; Bunge RP
    Exp Neurol; 1997 Dec; 148(2):502-22. PubMed ID: 9417829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aspartoacylase gene knockout results in severe vacuolation in the white matter and gray matter of the spinal cord in the mouse.
    Surendran S; Campbell GA; Tyring SK; Matalon R
    Neurobiol Dis; 2005 Mar; 18(2):385-9. PubMed ID: 15686967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury.
    Gomes-Leal W; Corkill DJ; Freire MA; Picanço-Diniz CW; Perry VH
    Exp Neurol; 2004 Dec; 190(2):456-67. PubMed ID: 15530884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regeneration of primary sensory axons into the adult rat spinal cord via a peripheral nerve graft bridging the lumbar dorsal roots to the dorsal column.
    Dam-Hieu P; Liu S; Choudhri T; Said G; Tadié M
    J Neurosci Res; 2002 May; 68(3):293-304. PubMed ID: 12111859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathological changes of isolated spinal cord axons in response to mechanical stretch.
    Shi R; Pryor JD
    Neuroscience; 2002; 110(4):765-77. PubMed ID: 11934483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microcirculatory disturbances during the early phase following experimental spinal cord trauma in the rat.
    Sasaki S; Schneider H; Renz S
    Adv Neurol; 1978; 20():423-31. PubMed ID: 676906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphology and morphometry of human chronic spinal cord injury using diffusion tensor imaging and fuzzy logic.
    Ellingson BM; Ulmer JL; Schmit BD
    Ann Biomed Eng; 2008 Feb; 36(2):224-36. PubMed ID: 18066663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microvascular perfusion experimental spinal cord injury.
    Means ED; Anderson DK; Nicolosi G; Gaudsmith J
    Surg Neurol; 1978 Jun; 9(6):353-60. PubMed ID: 675493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The experimental contusion injury of the spinal cord in sheep.
    Yeo JD; Payne W; Hinwood B; Kidman AD
    Paraplegia; 1975 Feb; 12(4):279-98. PubMed ID: 1121415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of spinal cord trauma on myelin.
    Banik NL; Powers JM; Hogan EL
    J Neuropathol Exp Neurol; 1980 May; 39(3):232-44. PubMed ID: 6245191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-resolution myelin water measurements in rat spinal cord.
    Kozlowski P; Liu J; Yung AC; Tetzlaff W
    Magn Reson Med; 2008 Apr; 59(4):796-802. PubMed ID: 18302247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histological and ultrastructural analysis of white matter damage after naturally-occurring spinal cord injury.
    Smith PM; Jeffery ND
    Brain Pathol; 2006 Apr; 16(2):99-109. PubMed ID: 16768749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.