BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 11245593)

  • 1. Role of SNAP-23 in trafficking of H+-ATPase in cultured inner medullary collecting duct cells.
    Banerjee A; Li G; Alexander EA; Schwartz JH
    Am J Physiol Cell Physiol; 2001 Apr; 280(4):C775-81. PubMed ID: 11245593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNARE proteins regulate H(+)-ATPase redistribution to the apical membrane in rat renal inner medullary collecting duct cells.
    Banerjee A; Shih T; Alexander EA; Schwartz JH
    J Biol Chem; 1999 Sep; 274(37):26518-22. PubMed ID: 10473613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syntaxin 1A has a specific binding site in the H3 domain that is critical for targeting of H+-ATPase to apical membrane of renal epithelial cells.
    Li G; Yang Q; Alexander EA; Schwartz JH
    Am J Physiol Cell Physiol; 2005 Sep; 289(3):C665-72. PubMed ID: 15872013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Munc-18-2 regulates exocytosis of H(+)-ATPase in rat inner medullary collecting duct cells.
    Nicoletta JA; Ross JJ; Li G; Cheng Q; Schwartz J; Alexander EA; Schwartz JH
    Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1366-74. PubMed ID: 15240346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells.
    Galli T; Zahraoui A; Vaidyanathan VV; Raposo G; Tian JM; Karin M; Niemann H; Louvard D
    Mol Biol Cell; 1998 Jun; 9(6):1437-48. PubMed ID: 9614185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H+ secretion is inhibited by clostridial toxins in an inner medullary collecting duct cell line.
    Alexander EA; Shih T; Schwartz JH
    Am J Physiol; 1997 Dec; 273(6):F1054-7. PubMed ID: 9435696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Syntaxin isoform specificity in the regulation of renal H+-ATPase exocytosis.
    Li G; Alexander EA; Schwartz JH
    J Biol Chem; 2003 May; 278(22):19791-7. PubMed ID: 12651853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of SNAREs and H+-ATPase in the targeting of proton pump-coated vesicles to collecting duct cell apical membrane.
    Schwartz JH; Li G; Yang Q; Suri V; Ross JJ; Alexander EA
    Kidney Int; 2007 Dec; 72(11):1310-5. PubMed ID: 17805241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms.
    Risinger C; Bennett MK
    J Neurochem; 1999 Feb; 72(2):614-24. PubMed ID: 9930733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of SNARE proteins in rat parotid acinar cells.
    Takuma T; Arakawa T; Tajima Y
    Arch Oral Biol; 2000 May; 45(5):369-75. PubMed ID: 10739858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization and function of soluble N-ethylmaleimide-sensitive factor attachment protein-25 and vesicle-associated membrane protein-2 in functioning gastric parietal cells.
    Karvar S; Yao X; Crothers JM; Liu Y; Forte JG
    J Biol Chem; 2002 Dec; 277(51):50030-5. PubMed ID: 12386166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells.
    Lafont F; Verkade P; Galli T; Wimmer C; Louvard D; Simons K
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3734-8. PubMed ID: 10097106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Botulinum neurotoxin B inhibits insulin-stimulated glucose uptake into 3T3-L1 adipocytes and cleaves cellubrevin unlike type A toxin which failed to proteolyze the SNAP-23 present.
    Chen F; Foran P; Shone CC; Foster KA; Melling J; Dolly JO
    Biochemistry; 1997 May; 36(19):5719-28. PubMed ID: 9153412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis.
    Hatsuzawa K; Lang T; Fasshauer D; Bruns D; Jahn R
    J Biol Chem; 2003 Aug; 278(33):31159-66. PubMed ID: 12782620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion.
    Pellegrini LL; O'Connor V; Lottspeich F; Betz H
    EMBO J; 1995 Oct; 14(19):4705-13. PubMed ID: 7588600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial sodium channel is regulated by SNAP-23/syntaxin 1A interplay.
    Saxena SK; George CM; Pinskiy V; McConnell B
    Biochem Biophys Res Commun; 2006 May; 343(4):1279-85. PubMed ID: 16581026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNAP-25 regulation during adrenal gland development: comparison with differentiation markers and other SNAREs.
    Hepp R; Grant NJ; Aunis D; Langley K
    J Comp Neurol; 2000 Jun; 421(4):533-42. PubMed ID: 10842212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vesicle fusion proteins in rat inner medullary collecting duct and amphibian bladder.
    Franki N; Macaluso F; Gao Y; Hays RM
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C792-7. PubMed ID: 7900782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells.
    Low SH; Chapin SJ; Wimmer C; Whiteheart SW; Kömüves LG; Mostov KE; Weimbs T
    J Cell Biol; 1998 Jun; 141(7):1503-13. PubMed ID: 9647644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma membrane targeting of SNAP-25 increases its local concentration and is necessary for SNARE complex formation and regulated exocytosis.
    Koticha DK; McCarthy EE; Baldini G
    J Cell Sci; 2002 Aug; 115(Pt 16):3341-51. PubMed ID: 12140265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.