BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11245783)

  • 1. Evidence for a quinone binding site close to the interface between NUOD and NUOB subunits of Complex I.
    Prieur I; Lunardi J; Dupuis A
    Biochim Biophys Acta; 2001 Apr; 1504(2-3):173-8. PubMed ID: 11245783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 49-kDa subunit of NADH-ubiquinone oxidoreductase (Complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors.
    Darrouzet E; Issartel JP; Lunardi J; Dupuis A
    FEBS Lett; 1998 Jul; 431(1):34-8. PubMed ID: 9684860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic evidence for the existence of two quinone related inhibitor binding sites in NADH-CoQ reductase.
    Darrouzet E; Dupuis A
    Biochim Biophys Acta; 1997 Mar; 1319(1):1-4. PubMed ID: 9107311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a characterization of the connecting module of complex I.
    Dupuis A; Prieur I; Lunardi J
    J Bioenerg Biomembr; 2001 Jun; 33(3):159-68. PubMed ID: 11695825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the inhibitory action of natural rotenone and its stereoisomers with various NADH-ubiquinone reductases.
    Ueno H; Miyoshi H; Ebisui K; Iwamura H
    Eur J Biochem; 1994 Oct; 225(1):411-7. PubMed ID: 7925463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin of cluster N2 of the energy-transducing NADH-quinone oxidoreductase: comparisons of phylogenetically related enzymes.
    Yano T; Ohnishi T
    J Bioenerg Biomembr; 2001 Jun; 33(3):213-22. PubMed ID: 11695831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling.
    Schuler F; Casida JE
    Biochim Biophys Acta; 2001 Jul; 1506(1):79-87. PubMed ID: 11418099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of tyrosines 114 and 139 of subunit NuoB in the proton pathway around cluster N2 in Escherichia coli NADH:ubiquinone oxidoreductase.
    Flemming D; Hellwig P; Friedrich T
    J Biol Chem; 2003 Jan; 278(5):3055-62. PubMed ID: 12446673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The insecticide target in the PSST subunit of complex I.
    Schuler F; Casida JE
    Pest Manag Sci; 2001 Oct; 57(10):932-40. PubMed ID: 11695186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of complex I, rotenone-sensitive NADH: ubiquinone oxidoreductase, from the procyclic forms of Trypanosoma brucei.
    Fang J; Wang Y; Beattie DS
    Eur J Biochem; 2001 May; 268(10):3075-82. PubMed ID: 11358527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron-sulfur cluster N2 to quinone.
    Schuler F; Yano T; Di Bernardo S; Yagi T; Yankovskaya V; Singer TP; Casida JE
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):4149-53. PubMed ID: 10097178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal quinone pigments as oxidizers and inhibitors of mitochondrial NADH:ubiquinone reductase.
    Bironaité DA; Cénas NK; Anusevicius ZJ; Medentsev AG; Akimenko VK; Usanov SA
    Arch Biochem Biophys; 1992 Sep; 297(2):253-7. PubMed ID: 1497345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved amino acid residues of the NuoD segment important for structure and function of Escherichia coli NDH-1 (complex I).
    Sinha PK; Castro-Guerrero N; Patki G; Sato M; Torres-Bacete J; Sinha S; Miyoshi H; Matsuno-Yagi A; Yagi T
    Biochemistry; 2015 Jan; 54(3):753-64. PubMed ID: 25545070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nuoM arg368his mutation in NADH:ubiquinone oxidoreductase from Rhodobacter capsulatus: a model for the human nd4-11778 mtDNA mutation associated with Leber's hereditary optic neuropathy.
    Lunardi J; Darrouzet E; Dupuis A; Issartel JP
    Biochim Biophys Acta; 1998 Aug; 1407(2):114-24. PubMed ID: 9685604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The second coenzyme Q1 binding site of bovine heart NADH: coenzyme Q oxidoreductase.
    Nakashima Y; Shinzawa-Itoh K; Watanabe K; Naoki K; Hano N; Yoshikawa S
    J Bioenerg Biomembr; 2002 Apr; 34(2):89-94. PubMed ID: 12018892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mitochondrial and prokaryotic proton-translocating NADH:ubiquinone oxidoreductases: similarities and dissimilarities of the quinone-junction sites.
    Grivennikova VG; Roth R; Zakharova NV; Hägerhäll C; Vinogradov AD
    Biochim Biophys Acta; 2003 Dec; 1607(2-3):79-90. PubMed ID: 14670598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic characterization of the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae.
    Velázquez I; Pardo JP
    Arch Biochem Biophys; 2001 May; 389(1):7-14. PubMed ID: 11370674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases.
    Satoh T; Miyoshi H; Sakamoto K; Iwamura H
    Biochim Biophys Acta; 1996 Jan; 1273(1):21-30. PubMed ID: 8573592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein and gene structure of the NADH-binding fragment of Rhodobacter capsulatus NADH:ubiquinone oxidoreductase.
    Herter SM; Schiltz E; Drews G
    Eur J Biochem; 1997 Jun; 246(3):800-8. PubMed ID: 9219542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals.
    Ohnishi ST; Shinzawa-Itoh K; Ohta K; Yoshikawa S; Ohnishi T
    Biochim Biophys Acta; 2010 Dec; 1797(12):1901-9. PubMed ID: 20513438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.