These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 11246123)
1. Investigation of the role of the 2',3'-epoxidation pathway in the bioactivation and genotoxicity of dietary allylbenzene analogs. Guenthner TM; Luo G Toxicology; 2001 Mar; 160(1-3):47-58. PubMed ID: 11246123 [TBL] [Abstract][Full Text] [Related]
2. Covalent binding to DNA in vitro of 2',3'-oxides derived from allylbenzene analogs. Luo G; Guenthner TM Drug Metab Dispos; 1996 Sep; 24(9):1020-7. PubMed ID: 8886614 [TBL] [Abstract][Full Text] [Related]
3. Detoxication of the 2',3'-epoxide metabolites of allylbenzene and estragole. Conjugation with glutathione. Luo G; Guenthner TM Drug Metab Dispos; 1994; 22(5):731-7. PubMed ID: 7835225 [TBL] [Abstract][Full Text] [Related]
4. Metabolism of allylbenzene 2',3'-oxide and estragole 2',3'-oxide in the isolated perfused rat liver. Luo G; Guenthner TM J Pharmacol Exp Ther; 1995 Feb; 272(2):588-96. PubMed ID: 7853172 [TBL] [Abstract][Full Text] [Related]
5. Hydrolysis of the 2',3'-allylic epoxides of allylbenzene, estragole, eugenol, and safrole by both microsomal and cytosolic epoxide hydrolases. Luo G; Qato MK; Guenthner TM Drug Metab Dispos; 1992; 20(3):440-5. PubMed ID: 1521503 [TBL] [Abstract][Full Text] [Related]
6. Biotransformation of allylbenzene analogues in vivo and in vitro through the epoxide-diol pathway. Delaforge M; Janiaud P; Levi P; Morizot JP Xenobiotica; 1980 Oct; 10(10):737-44. PubMed ID: 7456490 [TBL] [Abstract][Full Text] [Related]
7. 32P-postlabeling analysis of adducts formed between DNA and safrole 2',3'-epoxide: absence of adduct formation in vivo. Qato MK; Guenthner TM Toxicol Lett; 1995 Jan; 75(1-3):201-7. PubMed ID: 7863528 [TBL] [Abstract][Full Text] [Related]
8. Comparative investigation of the mutagenicity of propenylic and allylic asarone isomers in the Ames fluctuation assay. Berg K; Bischoff R; Stegmüller S; Cartus A; Schrenk D Mutagenesis; 2016 Jul; 31(4):443-51. PubMed ID: 26895844 [TBL] [Abstract][Full Text] [Related]
9. The side-chain epoxidation and hydroxylation of the hepatocarcinogens safrole and estragole and some related compounds by rat and mouse liver microsomes. Swanson AB; Miller EC; Miller JA Biochim Biophys Acta; 1981 Apr; 673(4):504-16. PubMed ID: 7225430 [TBL] [Abstract][Full Text] [Related]
10. In vivo doses of butadiene epoxides as estimated from in vitro enzyme kinetics by using cob(I)alamin and measured hemoglobin adducts: an inter-species extrapolation approach. Motwani HV; Törnqvist M Toxicol Appl Pharmacol; 2014 Dec; 281(3):276-84. PubMed ID: 25448046 [TBL] [Abstract][Full Text] [Related]
11. Formation of DNA adducts from oil-derived products analyzed by 32P-HPLC. Akkineni LK; Zeisig M; Baranczewski P; Ekström LG; Möller L Arch Toxicol; 2001 Jan; 74(11):720-31. PubMed ID: 11218050 [TBL] [Abstract][Full Text] [Related]
12. DNA adducts of the ubiquitous environmental contaminant cyclopenta[cd]pyrene. Beach AC; Gupta RC Carcinogenesis; 1994 May; 15(5):1065-72. PubMed ID: 8200070 [TBL] [Abstract][Full Text] [Related]
13. Research strategy for assessing target tissue dosimetry of 1,3-butadiene in laboratory animals and humans. Bond JA; Csanády GA; Leavens T; Medinsky MA IARC Sci Publ; 1993; (127):45-55. PubMed ID: 8070886 [TBL] [Abstract][Full Text] [Related]
14. 32P-post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. I. Adult female CD-1 mice. Randerath K; Haglund RE; Phillips DH; Reddy MV Carcinogenesis; 1984 Dec; 5(12):1613-22. PubMed ID: 6499112 [TBL] [Abstract][Full Text] [Related]
15. Stereochemical aspects in the 4-vinylcyclohexene biotransformation with rat liver microsomes and purified p450s. monoepoxides and diols. Chiappe C; De Rubertis A; De Carlo M; Amato G; Gervasi PG Chem Res Toxicol; 2001 May; 14(5):492-9. PubMed ID: 11368546 [TBL] [Abstract][Full Text] [Related]
16. Genotoxicity of 1,3-butadiene and its epoxy intermediates. Walker VE; Walker DM; Meng Q; McDonald JD; Scott BR; Seilkop SK; Claffey DJ; Upton PB; Powley MW; Swenberg JA; Henderson RF; Res Rep Health Eff Inst; 2009 Aug; (144):3-79. PubMed ID: 20017413 [TBL] [Abstract][Full Text] [Related]
17. Structure-Activity Relationships for DNA Damage by Alkenylbenzenes in Turkey Egg Fetal Liver. Kobets T; Duan JD; Brunnemann KD; Etter S; Smith B; Williams GM Toxicol Sci; 2016 Apr; 150(2):301-11. PubMed ID: 26719370 [TBL] [Abstract][Full Text] [Related]
18. Metabolic inactivation of five glycidyl ethers in lung and liver of humans, rats and mice in vitro. Boogaard PJ; de Kloe KP; Bierau J; Kuiken G; Borkulo PE; Watson WP; van Sittert NJ Xenobiotica; 2000 May; 30(5):485-502. PubMed ID: 10875682 [TBL] [Abstract][Full Text] [Related]
19. 1,3-Dichloropropene epoxides: intermediates in bioactivation of the promutagen 1,3-dichloropropene. Schneider M; Quistad GB; Casida JE Chem Res Toxicol; 1998 Oct; 11(10):1137-44. PubMed ID: 9778309 [TBL] [Abstract][Full Text] [Related]
20. Comparative induction of unscheduled DNA synthesis in cultured rat hepatocytes by allylbenzenes and their 1'-hydroxy metabolites. Chan VS; Caldwell J Food Chem Toxicol; 1992 Oct; 30(10):831-6. PubMed ID: 1427504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]