These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11246490)

  • 21. [Morphological evaluation of the organ of Corti in the guinea pig subjected to acoustic trauma. I. Surface preparation study].
    Benito JI; Gil-Carcedo LM; Gayoso MJ
    Acta Otorrinolaringol Esp; 1991; 42(5):405-9. PubMed ID: 1816803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spiral ganglion neuron quantification in the guinea pig cochlea using Confocal Laser Scanning Microscopy compared to embedding methods.
    Wrzeszcz A; Reuter G; Nolte I; Lenarz T; Scheper V
    Hear Res; 2013 Dec; 306():145-55. PubMed ID: 23968822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in the mechanical tuning characteristics of the hearing organ following acoustic overstimulation.
    Ulfendahl M; Khanna SM; Löfstrand P
    Eur J Neurosci; 1993 Jun; 5(6):713-23. PubMed ID: 8261142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrastructural changes in the albino guinea pig cochlea at different survival times following cessation of 8-day cisplatin administration.
    Cardinaal RM; De Groot JC; Huizing EH; Smoorenburg GF; Veldman JE
    Acta Otolaryngol; 2004 Mar; 124(2):144-54. PubMed ID: 15072416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Imaging the living inner ear using intravital confocal microscopy.
    Tomo I; Le Calvez S; Maier H; Boutet de Monvel J; Fridberger A; Ulfendahl M
    Neuroimage; 2007 May; 35(4):1393-400. PubMed ID: 17382563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cochlear microphonic enhancement in two tone interactions.
    Nuttall AL; Dolan DF
    Hear Res; 1991 Feb; 51(2):235-45. PubMed ID: 2032959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Normal structure of the organ of Corti and the effect of noise-induced cochlear damage. In: Sensorineural hearing loss.
    Engström H; Ades HW; Bredberg G
    Ciba Found Symp; 1970; ():127-56. PubMed ID: 4943822
    [No Abstract]   [Full Text] [Related]  

  • 28. Dye coupling in the organ of Corti.
    Santos-Sacchi J
    Cell Tissue Res; 1986; 245(3):525-9. PubMed ID: 3757014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-frequency modulation of inner hair cell and organ of Corti responses in the guinea pig cochlea.
    Cheatham MA; Dallos P
    Hear Res; 1997 Jun; 108(1-2):191-212. PubMed ID: 9213131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of a dopaminergic agonist in the guinea pig cochlea.
    d'Aldin C; Puel JL; Leducq R; Crambes O; Eybalin M; Pujol R
    Hear Res; 1995 Oct; 90(1-2):202-11. PubMed ID: 8974998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pronounced infracuticular endocytosis in mammalian outer hair cells.
    Meyer J; Mack AF; Gummer AW
    Hear Res; 2001 Nov; 161(1-2):10-22. PubMed ID: 11744276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immediate alterations in the impulse noise exposed organ of Corti of the guinea pig.
    Meyer C; Biedermann M
    Acta Otolaryngol; 1980; 90(3-4):250-6. PubMed ID: 7468186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A; van Maarseveen JT; Scarfone E; Ulfendahl M; Flock B; Flock A
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variability of noise-induced damage in the guinea pig cochlea: electrophysiological and morphological correlates after strictly controlled exposures.
    Cody AR; Robertson D
    Hear Res; 1983 Jan; 9(1):55-70. PubMed ID: 6826468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Observation on Corti's organ of entire cochlea in the guinea pig by scanning electron microscopy.
    Gu ZP; Goodwen J
    Chin Med J (Engl); 1989 Apr; 102(4):251-6. PubMed ID: 2507237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the living cochlea using confocal microscopy.
    Ulfendahl M; Boutet de Monvel J; Le Calvez S
    Audiol Neurootol; 2002; 7(1):27-30. PubMed ID: 11914522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death.
    Knight MM; Roberts SR; Lee DA; Bader DL
    Am J Physiol Cell Physiol; 2003 Apr; 284(4):C1083-9. PubMed ID: 12661552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time sequence of degeneration pattern of the organ of Corti after acoustic overstimulation. A light microscopical and electrophysiological investigation in the guinea pig.
    Fredelius L; Rask-Andersen H; Johansson B; Urquiza R; Bagger-Sjöbäck D; Wersäll J
    Acta Otolaryngol; 1988; 106(1-2):81-93. PubMed ID: 3421102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subcellular distribution of protein kinase C in the living outer hair cell of the guinea pig cochlea.
    Ueda N; Ikeda K; Oshima T; Adachi M; Furukawa M; Takasaka T
    Hear Res; 1996 May; 94(1-2):24-30. PubMed ID: 8789808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.