These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 11246957)
1. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. Le MK; Zhu XM Biomaterials; 2001 Apr; 22(7):641-7. PubMed ID: 11246957 [TBL] [Abstract][Full Text] [Related]
2. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel. Buhagiar J; Dong H J Mater Sci Mater Med; 2012 Feb; 23(2):271-81. PubMed ID: 22160745 [TBL] [Abstract][Full Text] [Related]
3. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution. Assis SL; Rogero SO; Antunes RA; Padilha AF; Costa I J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):109-16. PubMed ID: 15660438 [TBL] [Abstract][Full Text] [Related]
4. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels. Alvarez K; Hyun SK; Fujimoto S; Nakajima H J Mater Sci Mater Med; 2008 Nov; 19(11):3385-97. PubMed ID: 18545945 [TBL] [Abstract][Full Text] [Related]
5. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Fathi MH; Salehi M; Saatchi A; Mortazavi V; Moosavi SB Dent Mater; 2003 May; 19(3):188-98. PubMed ID: 12628430 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures. Tang YC; Katsuma S; Fujimoto S; Hiromoto S Acta Biomater; 2006 Nov; 2(6):709-15. PubMed ID: 16935040 [TBL] [Abstract][Full Text] [Related]
7. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding. Proust G; Retraint D; Chemkhi M; Roos A; Demangel C Microsc Microanal; 2015 Aug; 21(4):919-26. PubMed ID: 26139391 [TBL] [Abstract][Full Text] [Related]
8. Corrosion characteristics of ferric and austenitic stainless steels for dental magnetic attachment. Endo K; Suzuki M; Ohno H Dent Mater J; 2000 Mar; 19(1):34-49. PubMed ID: 11219089 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Bordji K; Jouzeau JY; Mainard D; Payan E; Delagoutte JP; Netter P Biomaterials; 1996 Mar; 17(5):491-500. PubMed ID: 8991480 [TBL] [Abstract][Full Text] [Related]
10. In vitro response of human peripheral blood mononuclear cells to AISI 316L austenitic stainless steel subjected to nitriding and collagen coating treatments. Stio M; Martinesi M; Treves C; Borgioli F J Mater Sci Mater Med; 2015 Feb; 26(2):100. PubMed ID: 25655502 [TBL] [Abstract][Full Text] [Related]
11. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L. Kao WH; Su YL; Horng JH; Zhang KX J Biomater Appl; 2016 Aug; 31(2):215-29. PubMed ID: 27422714 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical Behavior of Plasma-Nitrided Austenitic Stainless Steel in Chloride Solutions. Zatkalíková V; Drímalová P; Balin K; Slezák M; Markovičová L Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274579 [TBL] [Abstract][Full Text] [Related]
13. Austenitic and duplex stainless steels in simulated physiological solution characterized by electrochemical and X-ray photoelectron spectroscopy studies. Kocijan A; Conradi M; Schön PM J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):799-807. PubMed ID: 22331841 [TBL] [Abstract][Full Text] [Related]
14. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel. Stio M; Martinesi M; Treves C; Borgioli F Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1081-91. PubMed ID: 27612806 [TBL] [Abstract][Full Text] [Related]
15. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Talha M; Behera CK; Sinha OP Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251 [TBL] [Abstract][Full Text] [Related]
16. [Effects of skeletal muscle proteins on corrosion of stainless steels]. Rojas C; Lago ME Acta Cient Venez; 2002; 53(2):156-63. PubMed ID: 12516369 [TBL] [Abstract][Full Text] [Related]
17. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
18. Duplex stainless steels for osteosynthesis devices. Cigada A; Rondelli G; Vicentini B; Giacomazzi M; Roos A J Biomed Mater Res; 1989 Sep; 23(9):1087-95. PubMed ID: 2777835 [TBL] [Abstract][Full Text] [Related]
19. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel]. Liang C; Guo L; Chen W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118 [TBL] [Abstract][Full Text] [Related]
20. Corrosion Resistance of AISI 316L Stainless Steel Biomaterial after Plasma Immersion Ion Implantation of Nitrogen. Zatkalíková V; Halanda J; Vaňa D; Uhríčik M; Markovičová L; Štrbák M; Kuchariková L Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]