These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 11247268)
1. Characterization of wet massing behavior of silicified microcrystalline cellulose and alpha-lactose monohydrate using near-infrared spectroscopy. Luukkonen P; Rantanen J; Mäkelä K; Räsänen E; Tenhunen J; Yliruusi J Pharm Dev Technol; 2001; 6(1):1-9. PubMed ID: 11247268 [TBL] [Abstract][Full Text] [Related]
2. Role of excipients in hydrate formation kinetics of theophylline in wet masses studied by near-infrared spectroscopy. Jørgensen AC; Airaksinen S; Karjalainen M; Luukkonen P; Rantanen J; Yliruusi J Eur J Pharm Sci; 2004 Sep; 23(1):99-104. PubMed ID: 15324927 [TBL] [Abstract][Full Text] [Related]
3. Effects of excipients on hydrate formation in wet masses containing theophylline. Airaksinen S; Luukkonen P; Jørgensen A; Karjalainen M; Rantanen J; Yliruusi J J Pharm Sci; 2003 Mar; 92(3):516-28. PubMed ID: 12587113 [TBL] [Abstract][Full Text] [Related]
4. Near IR spectroscopy to quantify the silica content and difference between silicified microcrystalline cellulose and physical mixtures of microcrystalline cellulose and silica. Buckton G; Yonemochi E Eur J Pharm Sci; 2000 Mar; 10(1):77-80. PubMed ID: 10699385 [TBL] [Abstract][Full Text] [Related]
5. Comparison of torque measurements and near-infrared spectroscopy in characterization of a wet granulation process. Jørgensen AC; Luukkonen P; Rantanen J; Schaefer T; Juppo AM; Yliruusi J J Pharm Sci; 2004 Sep; 93(9):2232-43. PubMed ID: 15295784 [TBL] [Abstract][Full Text] [Related]
6. Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Luukkonen P; Schaefer T; Hellén L; Juppo AM; Yliruusi J Int J Pharm; 1999 Oct; 188(2):181-92. PubMed ID: 10518674 [TBL] [Abstract][Full Text] [Related]
7. Characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a powder rheometer. Luukkonen P; Schaefer T; Podczeck F; Newton M; Hellén L; Yliruusi J Eur J Pharm Sci; 2001 May; 13(2):143-9. PubMed ID: 11297898 [TBL] [Abstract][Full Text] [Related]
8. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation. Buckton G; Yonemochi E; Yoon WL; Moffat AC Int J Pharm; 1999 Apr; 181(1):41-7. PubMed ID: 10370201 [TBL] [Abstract][Full Text] [Related]
9. Is silicified wet-granulated microcrystalline cellulose better than original wet-granulated microcrystalline cellulose? Habib YS; Abramowitz R; Jerzewski RL; Jain NB; Agharkar SN Pharm Dev Technol; 1999 Aug; 4(3):431-7. PubMed ID: 10434289 [TBL] [Abstract][Full Text] [Related]
10. Use of a capillary rheometer to evaluate the rheological properties of microcrystalline cellulose and silicified microcrystalline cellulose wet masses. Luukkonen P; Newton JM; Podczeck F; Yliruusi J Int J Pharm; 2001 Mar; 216(1-2):147-57. PubMed ID: 11274816 [TBL] [Abstract][Full Text] [Related]
11. Potential application of silicified microcrystalline cellulose in direct-fill formulations for automatic capsule-filling machines. Guo M; Augsburger LL Pharm Dev Technol; 2003; 8(1):47-59. PubMed ID: 12665197 [TBL] [Abstract][Full Text] [Related]
12. Time-resolved near-infrared spectroscopic study of the dissolution of crystalline lactose. Hattori Y; Otsuka M Eur J Pharm Sci; 2012 Dec; 47(5):884-9. PubMed ID: 23000381 [TBL] [Abstract][Full Text] [Related]
13. Dynamic moisture sorption and desorption of standard and silicified microcrystalline cellulose. Kachrimanis K; Noisternig MF; Griesser UJ; Malamataris S Eur J Pharm Biopharm; 2006 Nov; 64(3):307-15. PubMed ID: 16870408 [TBL] [Abstract][Full Text] [Related]
14. Complex dielectric properties of microcrystalline cellulose, anhydrous lactose, and α-lactose monohydrate powders using a microwave-based open-reflection resonator sensor. Sung PF; Hsieh YL; Angonese K; Dunn D; King RJ; Machbitz R; Christianson A; Chappell WJ; Taylor LS; Harris MT J Pharm Sci; 2011 Jul; 100(7):2920-34. PubMed ID: 21328582 [TBL] [Abstract][Full Text] [Related]
15. Differential heat of adsorption of water vapor on silicified microcrystalline cellulose (SMCC): an investigation using isothermal microcalorimetry. Qian KK; Bogner RH Pharm Dev Technol; 2011; 16(6):616-26. PubMed ID: 20722499 [TBL] [Abstract][Full Text] [Related]
16. Functional performance of silicified microcrystalline cellulose versus microcrystalline cellulose: a case study. Aljaberi A; Chatterji A; Shah NH; Sandhu HK Drug Dev Ind Pharm; 2009 Sep; 35(9):1066-71. PubMed ID: 19353418 [TBL] [Abstract][Full Text] [Related]
17. The evaluation of the rheological properties of lactose/microcrystalline cellulose and water mixtures by controlled stress rheometry and the relationship to the production of spherical pellets by extrusion/spheronization. MacRitchie KA; Newton JM; Rowe RC Eur J Pharm Sci; 2002 Oct; 17(1-2):43-50. PubMed ID: 12356419 [TBL] [Abstract][Full Text] [Related]
18. A study on water adsorption onto microcrystalline cellulose by near-infrared spectroscopy with two-dimensional correlation spectroscopy and principal component analysis. Watanabe A; Morita S; Ozaki Y Appl Spectrosc; 2006 Sep; 60(9):1054-61. PubMed ID: 17002831 [TBL] [Abstract][Full Text] [Related]
19. In-line moisture measurement during granulation with a four-wavelength near infrared sensor: an evaluation of particle size and binder effects. Rantanen J; Räsänen E; Tenhunen J; Känsäkoski M; Mannermaa J; Yliruusi J Eur J Pharm Biopharm; 2000 Sep; 50(2):271-6. PubMed ID: 10962238 [TBL] [Abstract][Full Text] [Related]
20. Weight and weight uniformity of hard gelatin capsules filled with microcrystalline cellulose and silicified microcrystalline cellulose. Felton LA; Garcia DI; Farmer R Drug Dev Ind Pharm; 2002 Apr; 28(4):467-72. PubMed ID: 12056540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]