These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 11247768)
1. Differential dynamic baroreflex regulation of cardiac and renal sympathetic nerve activities. Kawada T; Shishido T; Inagaki M; Tatewaki T; Zheng C; Yanagiya Y; Sugimachi M; Sunagawa K Am J Physiol Heart Circ Physiol; 2001 Apr; 280(4):H1581-90. PubMed ID: 11247768 [TBL] [Abstract][Full Text] [Related]
2. Uniformity in dynamic baroreflex regulation of left and right cardiac sympathetic nerve activities. Kawada T; Uemura K; Kashihara K; Jin Y; Li M; Zheng C; Sugimachi M; Sunagawa K Am J Physiol Regul Integr Comp Physiol; 2003 Jun; 284(6):R1506-12. PubMed ID: 12573981 [TBL] [Abstract][Full Text] [Related]
4. Intravenous angiotensin II does not affect dynamic baroreflex characteristics of the neural or peripheral arc. Kashihara K; Takahashi Y; Chatani K; Kawada T; Zheng C; Li M; Sugimachi M; Sunagawa K Jpn J Physiol; 2003 Apr; 53(2):135-43. PubMed ID: 12877769 [TBL] [Abstract][Full Text] [Related]
5. Bezold-Jarisch reflex attenuates dynamic gain of baroreflex neural arc. Kashihara K; Kawada T; Yanagiya Y; Uemura K; Inagaki M; Takaki H; Sugimachi M; Sunagawa K Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H833-40. PubMed ID: 12714325 [TBL] [Abstract][Full Text] [Related]
6. Dynamic and static baroreflex control of muscle sympathetic nerve activity (SNA) parallels that of renal and cardiac SNA during physiological change in pressure. Kamiya A; Kawada T; Yamamoto K; Michikami D; Ariumi H; Miyamoto T; Shimizu S; Uemura K; Aiba T; Sunagawa K; Sugimachi M Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2641-8. PubMed ID: 16055514 [TBL] [Abstract][Full Text] [Related]
7. Central chemoreflex activation induces sympatho-excitation without altering static or dynamic baroreflex function in normal rats. Saku K; Tohyama T; Shinoda M; Kishi T; Hosokawa K; Nishikawa T; Oga Y; Sakamoto T; Tsutsui H; Miyamoto T; Sunagawa K Physiol Rep; 2017 Sep; 5(17):. PubMed ID: 28899913 [TBL] [Abstract][Full Text] [Related]
8. Parallel resetting of arterial baroreflex control of renal and cardiac sympathetic nerve activities during upright tilt in rabbits. Kamiya A; Kawada T; Mizuno M; Shimizu S; Sugimachi M Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1966-75. PubMed ID: 20348221 [TBL] [Abstract][Full Text] [Related]
9. Upright tilt resets dynamic transfer function of baroreflex neural arc to minify the pressure disturbance in total baroreflex control. Kamiya A; Kawada T; Yamamoto K; Mizuno M; Shimizu S; Sugimachi M J Physiol Sci; 2008 Jun; 58(3):189-98. PubMed ID: 18471343 [TBL] [Abstract][Full Text] [Related]
10. A derivative-sigmoidal model reproduces operating point-dependent baroreflex neural arc transfer characteristics. Kawada T; Uemura K; Kashihara K; Kamiya A; Sugimachi M; Sunagawa K Am J Physiol Heart Circ Physiol; 2004 Jun; 286(6):H2272-9. PubMed ID: 14962840 [TBL] [Abstract][Full Text] [Related]
11. Baroreflex increases correlation and coherence of muscle sympathetic nerve activity (SNA) with renal and cardiac SNAs. Kamiya A; Kawada T; Mizuno M; Miyamoto T; Uemura K; Seki K; Shimizu S; Sugimachi M J Physiol Sci; 2006 Oct; 56(5):325-33. PubMed ID: 16956421 [TBL] [Abstract][Full Text] [Related]
12. Input-size dependence of the baroreflex neural arc transfer characteristics. Kawada T; Yanagiya Y; Uemura K; Miyamoto T; Zheng C; Li M; Sugimachi M; Sunagawa K Am J Physiol Heart Circ Physiol; 2003 Jan; 284(1):H404-15. PubMed ID: 12388325 [TBL] [Abstract][Full Text] [Related]
13. Closed-loop identification of carotid sinus baroreflex transfer characteristics using electrical stimulation. Kawada T; Sato T; Inagaki M; Shishido T; Tatewaki T; Yanagiya Y; Zheng C; Sugimachi M; Sunagawa K Jpn J Physiol; 2000 Jun; 50(3):371-80. PubMed ID: 11016987 [TBL] [Abstract][Full Text] [Related]
14. Summation of dynamic transfer characteristics of left and right carotid sinus baroreflexes in rabbits. Kawada T; Sato T; Shishido T; Inagaki M; Tatewaki T; Yanagiya Y; Sugimachi M; Sunagawa K Am J Physiol; 1999 Sep; 277(3):H857-65. PubMed ID: 10484404 [TBL] [Abstract][Full Text] [Related]
16. Role of nitric oxide in regulation of baroreceptor reflex. Jimbo M; Suzuki H; Ichikawa M; Kumagai K; Nishizawa M; Saruta T J Auton Nerv Syst; 1994 Dec; 50(2):209-19. PubMed ID: 7533803 [TBL] [Abstract][Full Text] [Related]
17. Acute resetting of the carotid sinus baroreflex by aortic depressor nerve stimulation. Hayward L; Hay M; Felder RB Am J Physiol; 1993 Apr; 264(4 Pt 2):H1215-22. PubMed ID: 8476098 [TBL] [Abstract][Full Text] [Related]
18. Influence of vagotomy on the baroreflex sensitivity in anesthetized dogs with experimental heart failure. Wang W; Brändle M; Zucker IH Am J Physiol; 1993 Oct; 265(4 Pt 2):H1310-7. PubMed ID: 8238419 [TBL] [Abstract][Full Text] [Related]
19. Effects of NO on baroreflex control of heart rate and renal nerve activity in conscious rabbits. Liu JL; Murakami H; Zucker IH Am J Physiol; 1996 Jun; 270(6 Pt 2):R1361-70. PubMed ID: 8764305 [TBL] [Abstract][Full Text] [Related]
20. Closed-loop estimation of the open-loop carotid sinus baroreflex transfer function for the use of animal experiments in space. Kawada T; Sato T; Shishido T; Sugimachi M; Sunagawa K J Gravit Physiol; 2000 Jul; 7(2):P137-8. PubMed ID: 12697495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]