These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. Huang TH; Lin SC; Chang FL; Hsieh SS; Liu SH; Yang RS J Appl Physiol (1985); 2003 Jul; 95(1):300-7. PubMed ID: 12611764 [TBL] [Abstract][Full Text] [Related]
3. Bone mechanical properties after exercise training in young and old rats. Raab DM; Smith EL; Crenshaw TD; Thomas DP J Appl Physiol (1985); 1990 Jan; 68(1):130-4. PubMed ID: 2312452 [TBL] [Abstract][Full Text] [Related]
4. Femoral neck response to exercise and subsequent deconditioning in young and adult rats. Järvinen TL; Pajamäki I; Sievänen H; Vuohelainen T; Tuukkanen J; Järvinen M; Kannus P J Bone Miner Res; 2003 Jul; 18(7):1292-9. PubMed ID: 12854840 [TBL] [Abstract][Full Text] [Related]
5. Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Joo YI; Sone T; Fukunaga M; Lim SG; Onodera S Bone; 2003 Oct; 33(4):485-93. PubMed ID: 14555251 [TBL] [Abstract][Full Text] [Related]
6. Effect of resistance exercise training on cortical and cancellous bone in mature male rats. Westerlind KC; Fluckey JD; Gordon SE; Kraemer WJ; Farrell PA; Turner RT J Appl Physiol (1985); 1998 Feb; 84(2):459-64. PubMed ID: 9475853 [TBL] [Abstract][Full Text] [Related]
7. Differential effects of jump versus running exercise on trabecular architecture during remobilization after suspension-induced osteopenia in growing rats. Ju YI; Sone T; Ohnaru K; Choi HJ; Fukunaga M J Appl Physiol (1985); 2012 Mar; 112(5):766-72. PubMed ID: 22162526 [TBL] [Abstract][Full Text] [Related]
8. Swimming training increases the post-yield energy of bone in young male rats. Huang TH; Hsieh SS; Liu SH; Chang FL; Lin SC; Yang RS Calcif Tissue Int; 2010 Feb; 86(2):142-53. PubMed ID: 19957166 [TBL] [Abstract][Full Text] [Related]
9. High-impact exercise strengthens bone in osteopenic ovariectomized rats with the same outcome as Sham rats. Honda A; Sogo N; Nagasawa S; Shimizu T; Umemura Y J Appl Physiol (1985); 2003 Sep; 95(3):1032-7. PubMed ID: 12754179 [TBL] [Abstract][Full Text] [Related]
10. Differential response of rat limb bones to strenuous exercise. Li KC; Zernicke RF; Barnard RJ; Li AF J Appl Physiol (1985); 1991 Feb; 70(2):554-60. PubMed ID: 2022546 [TBL] [Abstract][Full Text] [Related]
11. Alterations in myocardial signal transduction due to aging and chronic dynamic exercise. Roth DA; White CD; Podolin DA; Mazzeo RS J Appl Physiol (1985); 1998 Jan; 84(1):177-84. PubMed ID: 9451633 [TBL] [Abstract][Full Text] [Related]
12. Attenuation of force deficit after lengthening contractions in soleus muscle from trained rats. Gosselin LE J Appl Physiol (1985); 2000 Apr; 88(4):1254-8. PubMed ID: 10749815 [TBL] [Abstract][Full Text] [Related]
13. Long-term exercise of young and adult female rats: effect on femoral neck biomechanical competence and bone structure. Søgaard CH; Danielsen CC; Thorling EB; Mosekilde L J Bone Miner Res; 1994 Mar; 9(3):409-16. PubMed ID: 8191936 [TBL] [Abstract][Full Text] [Related]
14. Influence of clenbuterol on bone metabolism in exercised or sedentary rats. Cavalié H; Lac G; Lebecque P; Chanteranne B; Davicco MJ; Barlet JP J Appl Physiol (1985); 2002 Dec; 93(6):2034-7. PubMed ID: 12433936 [TBL] [Abstract][Full Text] [Related]
15. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure. Tromp AM; Bravenboer N; Tanck E; Oostlander A; Holzmann PJ; Kostense PJ; Roos JC; Burger EH; Huiskes R; Lips P Calcif Tissue Int; 2006 Dec; 79(6):404-15. PubMed ID: 17160577 [TBL] [Abstract][Full Text] [Related]
16. Effects of jump training on bone are preserved after detraining, regardless of estrogen secretion state in rats. Umemura Y; Nagasawa S; Sogo N; Honda A J Appl Physiol (1985); 2008 Apr; 104(4):1116-20. PubMed ID: 18218903 [TBL] [Abstract][Full Text] [Related]
17. Effects of tower climbing exercise on bone mass, strength, and turnover in growing rats. Notomi T; Okimoto N; Okazaki Y; Tanaka Y; Nakamura T; Suzuki M J Bone Miner Res; 2001 Jan; 16(1):166-74. PubMed ID: 11149481 [TBL] [Abstract][Full Text] [Related]
18. Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific. Wallace JM; Rajachar RM; Allen MR; Bloomfield SA; Robey PG; Young MF; Kohn DH Bone; 2007 Apr; 40(4):1120-7. PubMed ID: 17240210 [TBL] [Abstract][Full Text] [Related]
19. Climbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice. Mori T; Okimoto N; Sakai A; Okazaki Y; Nakura N; Notomi T; Nakamura T J Bone Miner Res; 2003 Nov; 18(11):2002-9. PubMed ID: 14606513 [TBL] [Abstract][Full Text] [Related]
20. Reduced frequency of resistance-type exercise training promotes adaptation of the aged skeletal muscle microenvironment. Naimo MA; Rader EP; Ensey J; Kashon ML; Baker BA J Appl Physiol (1985); 2019 Apr; 126(4):1074-1087. PubMed ID: 30676867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]