BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 11247984)

  • 1. Kappa opioid receptor inhibition of glutamatergic transmission in the nucleus accumbens shell.
    Hjelmstad GO; Fields HL
    J Neurophysiol; 2001 Mar; 85(3):1153-8. PubMed ID: 11247984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitatory amino acid receptor subtype agonists induce feeding in the nucleus accumbens shell in rats: opioid antagonist actions and interactions with mu-opioid agonists.
    Echo JA; Lamonte N; Christian G; Znamensky V; Ackerman TF; Bodnar RJ
    Brain Res; 2001 Dec; 921(1-2):86-97. PubMed ID: 11720714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual synaptic sites of D(1)-dopaminergic regulation of ethanol sensitivity of NMDA receptors in nucleus accumbens.
    Zhang TA; Hendricson AW; Morrisett RA
    Synapse; 2005 Oct; 58(1):30-44. PubMed ID: 16037948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine depresses glutamatergic synaptic transmission in the rat parabrachial nucleus in vitro.
    Chen X; Kombian SB; Zidichouski JA; Pittman QJ
    Neuroscience; 1999 May; 90(2):457-68. PubMed ID: 10215151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids.
    Hoffman AF; Lupica CR
    J Neurophysiol; 2001 Jan; 85(1):72-83. PubMed ID: 11152707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats.
    Escobar AP; González MP; Meza RC; Noches V; Henny P; Gysling K; España RA; Fuentealba JA; Andrés ME
    Int J Neuropsychopharmacol; 2017 Aug; 20(8):660-669. PubMed ID: 28531297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic α
    Peng SY; Li B; Xi K; Wang JJ; Zhu JN
    Neurosci Lett; 2018 Feb; 665():117-122. PubMed ID: 29195907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic mechanism for anti-analgesic and anti-hyperalgesic actions of kappa-opioid receptors.
    Bie B; Pan ZZ
    J Neurosci; 2003 Aug; 23(19):7262-8. PubMed ID: 12917359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epileptiform activity in the nucleus accumbens induced by GABA(A) receptor antagonists in rat forebrain slices is of cortical origin.
    Buckby LE; Lacey MG
    Exp Brain Res; 2001 Nov; 141(2):146-52. PubMed ID: 11713626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of mu- and delta-opioid receptors causes presynaptic inhibition of glutamatergic excitation in neocortical neurons.
    Ostermeier AM; Schlösser B; Schwender D; Sutor B
    Anesthesiology; 2000 Oct; 93(4):1053-63. PubMed ID: 11020761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kappa opioid receptor activation in the nucleus accumbens inhibits glutamate and GABA release through different mechanisms.
    Hjelmstad GO; Fields HL
    J Neurophysiol; 2003 May; 89(5):2389-95. PubMed ID: 12740400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiation of synaptic strength and intrinsic excitability in the nucleus accumbens after 10 days of morphine withdrawal.
    Wu X; Shi M; Wei C; Yang M; Liu Y; Liu Z; Zhang X; Ren W
    J Neurosci Res; 2012 Jun; 90(6):1270-83. PubMed ID: 22388870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms underlying the enhancement of excitatory synaptic transmission in basolateral amygdala neurons of the kindling rat.
    Shoji Y; Tanaka E; Yamamoto S; Maeda H; Higashi H
    J Neurophysiol; 1998 Aug; 80(2):638-46. PubMed ID: 9705457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cellular mechanism for the antinociceptive effect of a kappa opioid receptor agonist.
    Ackley MA; Hurley RW; Virnich DE; Hammond DL
    Pain; 2001 Apr; 91(3):377-388. PubMed ID: 11275396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-Chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride, an inhibitor of the glycine transporter type 1, increases evoked-dopamine release in the rat nucleus accumbens in vivo via an enhanced glutamatergic neurotransmission.
    Leonetti M; Desvignes C; Bougault I; Souilhac J; Oury-Donat F; Steinberg R
    Neuroscience; 2006; 137(2):555-64. PubMed ID: 16289893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturation of excitatory synaptic transmission of the rat nucleus accumbens from juvenile to adult.
    Kasanetz F; Manzoni OJ
    J Neurophysiol; 2009 May; 101(5):2516-27. PubMed ID: 19244354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of glutamate release by presynaptic kappa 1-opioid receptors in the guinea pig dentate gyrus.
    Simmons ML; Terman GW; Drake CT; Chavkin C
    J Neurophysiol; 1994 Oct; 72(4):1697-705. PubMed ID: 7823095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mu-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons.
    Zhu W; Pan ZZ
    Neuroscience; 2005; 133(1):97-103. PubMed ID: 15893634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinergic modulation of primary afferent glutamatergic transmission in rat medullary dorsal horn neurons.
    Jeong SG; Choi IS; Cho JH; Jang IS
    Neuropharmacology; 2013 Dec; 75():295-303. PubMed ID: 23954675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro.
    Kao CQ; Coulter DA
    J Neurophysiol; 1997 May; 77(5):2661-76. PubMed ID: 9163382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.