These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11247992)

  • 21. Stimulus-dependent oscillations and evoked potentials in chinchilla auditory cortex.
    Delano PH; Pavez E; Robles L; Maldonado PE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Aug; 194(8):693-700. PubMed ID: 18465135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thalamic afferent activation of supragranular layers in auditory cortex in vitro: a voltage sensitive dye study.
    Broicher T; Bidmon HJ; Kamuf B; Coulon P; Gorji A; Pape HC; Speckmann EJ; Budde T
    Neuroscience; 2010 Jan; 165(2):371-85. PubMed ID: 19840834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decoding of auditory cortex signals with a LAMSTAR neural network.
    Muralidharan A; Rousche PJ
    Neurol Res; 2005 Jan; 27(1):4-10. PubMed ID: 15829151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Communication call-evoked gamma-band activity in the auditory cortex of awake bats is modified by complex acoustic features.
    Medvedev AV; Kanwal JS
    Brain Res; 2008 Jan; 1188():76-86. PubMed ID: 18054896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mode of firing and rectifying properties of nucleus ovoidalis neurons in the avian auditory thalamus.
    Ströhmann B; Schwarz DW; Puil E
    J Neurophysiol; 1994 Apr; 71(4):1351-60. PubMed ID: 8035219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale heterogeneous representation of sound attributes in rat primary auditory cortex: from unit activity to population dynamics.
    Ogawa T; Riera J; Goto T; Sumiyoshi A; Nonaka H; Jerbi K; Bertrand O; Kawashima R
    J Neurosci; 2011 Oct; 31(41):14639-53. PubMed ID: 21994380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex.
    Yang JW; An S; Sun JJ; Reyes-Puerta V; Kindler J; Berger T; Kilb W; Luhmann HJ
    Cereb Cortex; 2013 Jun; 23(6):1299-316. PubMed ID: 22593243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of cortical stimulation on auditory-responsive thalamic neurones in anaesthetized guinea pigs.
    Xiong Y; Yu YQ; Chan YS; He J
    J Physiol; 2004 Oct; 560(Pt 1):207-17. PubMed ID: 15272037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cortical frequency-specific plasticity is independently induced by intracortical circuitry.
    Kong L; Wang S; Liu X; Li L; Zeeman M; Yan J
    Neurosci Lett; 2018 Mar; 668():13-18. PubMed ID: 29274440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of reliable tone-evoked oscillations in the rat thalamo-cortical auditory system.
    Cotillon N; Nafati M; Edeline JM
    Hear Res; 2000 Apr; 142(1-2):113-30. PubMed ID: 10748334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex.
    Metherate R; Ashe JH
    Synapse; 1993 Jun; 14(2):132-43. PubMed ID: 8392756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developmental event-related gamma oscillations: effects of auditory attention.
    Yordanova J; Kolev V; Heinrich H; Woerner W; Banaschewski T; Rothenberger A
    Eur J Neurosci; 2002 Dec; 16(11):2214-24. PubMed ID: 12473089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts.
    Traub RD; Contreras D; Cunningham MO; Murray H; LeBeau FE; Roopun A; Bibbig A; Wilent WB; Higley MJ; Whittington MA
    J Neurophysiol; 2005 Apr; 93(4):2194-232. PubMed ID: 15525801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A computational model of how an interaction between the thalamocortical and thalamic reticular neurons transforms the low-frequency oscillations of the globus pallidus.
    Hadipour-Niktarash A
    J Comput Neurosci; 2006 Jun; 20(3):299-320. PubMed ID: 16683209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Individual auditory thalamic reticular neurons have large and cross-modal sources of cortical and thalamic inputs.
    Yu XJ; Meng XK; Xu XX; He J
    Neuroscience; 2011 Oct; 193():122-31. PubMed ID: 21820493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Basic Properties of Coordinated Neuronal Ensembles in the Auditory Thalamus.
    Hu C; Hasenstaub AR; Schreiner CE
    J Neurosci; 2024 May; 44(19):. PubMed ID: 38561224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low frequency damped oscillations of cat visual cortical neurones.
    Ahmed B
    Neuroreport; 2000 Apr; 11(6):1243-7. PubMed ID: 10817600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fear conditioning enhances γ oscillations and their entrainment of neurons representing the conditioned stimulus.
    Headley DB; Weinberger NM
    J Neurosci; 2013 Mar; 33(13):5705-17. PubMed ID: 23536084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dopaminergic Modulation of Lateral Amygdala Neuronal Activity: Differential D1 and D2 Receptor Effects on Thalamic and Cortical Afferent Inputs.
    Chang CH; Grace AA
    Int J Neuropsychopharmacol; 2015 Feb; 18(8):. PubMed ID: 25716776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.