BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 11248038)

  • 1. Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding.
    Török Z; Goloubinoff P; Horváth I; Tsvetkova NM; Glatz A; Balogh G; Varvasovszki V; Los DA; Vierling E; Crowe JH; Vigh L
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3098-103. PubMed ID: 11248038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small heat-shock proteins regulate membrane lipid polymorphism.
    Tsvetkova NM; Horváth I; Török Z; Wolkers WF; Balogi Z; Shigapova N; Crowe LM; Tablin F; Vierling E; Crowe JH; Vigh L
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13504-9. PubMed ID: 12368478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Heat shock lipid" in cyanobacteria during heat/light-acclimation.
    Balogi Z; Török Z; Balogh G; Jósvay K; Shigapova N; Vierling E; Vígh L; Horváth I
    Arch Biochem Biophys; 2005 Apr; 436(2):346-54. PubMed ID: 15797247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in synechocystis 6803.
    Balogi Z; Cheregi O; Giese KC; Juhász K; Vierling E; Vass I; Vígh L; Horváth I
    J Biol Chem; 2008 Aug; 283(34):22983-91. PubMed ID: 18574246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK.
    Mogk A; Schlieker C; Friedrich KL; Schönfeld HJ; Vierling E; Bukau B
    J Biol Chem; 2003 Aug; 278(33):31033-42. PubMed ID: 12788951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network.
    Veinger L; Diamant S; Buchner J; Goloubinoff P
    J Biol Chem; 1998 May; 273(18):11032-7. PubMed ID: 9556585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
    Diamant S; Goloubinoff P
    Biochemistry; 1998 Jul; 37(27):9688-94. PubMed ID: 9657681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of two small heat shock proteins from Anabaena sp. PCC 7120.
    Liu X; Huang W; Li M; Wu Q
    IUBMB Life; 2005 Jun; 57(6):449-54. PubMed ID: 16012054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a "fluidity gene".
    Horváth I; Glatz A; Varvasovszki V; Török Z; Páli T; Balogh G; Kovács E; Nádasdi L; Benkö S; Joó F; Vígh L
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3513-8. PubMed ID: 9520397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The permanently chaperone-active small heat shock protein Hsp17 from Caenorhabditis elegans exhibits topological separation of its N-terminal regions.
    Strauch A; Rossa B; Köhler F; Haeussler S; Mühlhofer M; Rührnößl F; Körösy C; Bushman Y; Conradt B; Haslbeck M; Weinkauf S; Buchner J
    J Biol Chem; 2023 Jan; 299(1):102753. PubMed ID: 36442512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein.
    Lee GJ; Vierling E
    Plant Physiol; 2000 Jan; 122(1):189-98. PubMed ID: 10631262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of citrate synthase thermal aggregation in vitro by recombinant small heat shock proteins.
    Gong W; Yue M; Xie B; Wan F; Guo J
    J Microbiol Biotechnol; 2009 Dec; 19(12):1628-34. PubMed ID: 20075630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli.
    Jiao W; Qian M; Li P; Zhao L; Chang Z
    J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a redox-regulated chaperone network.
    Hoffmann JH; Linke K; Graf PC; Lilie H; Jakob U
    EMBO J; 2004 Jan; 23(1):160-8. PubMed ID: 14685279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry.
    Cheng G; Basha E; Wysocki VH; Vierling E
    J Biol Chem; 2008 Sep; 283(39):26634-42. PubMed ID: 18621732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Only one dnaK homolog, dnaK2, is active transcriptionally and is essential in Synechocystis.
    Varvasovszki V; Glatz A; Shigapova N; Jósvay K; Vígh L; Horváth I
    Biochem Biophys Res Commun; 2003 Jun; 305(3):641-8. PubMed ID: 12763042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA; Kwiatkowska JM; Lipińska B
    Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a molecular chaperone-assisted protein folding bioreactor.
    Kohler RJ; Preuss M; Miller AD
    Biotechnol Prog; 2000; 16(4):671-5. PubMed ID: 10933845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.