BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11248249)

  • 1. Decreased antioxidant defense during replicative aging of the yeast Saccharomyces cerevisiae studied using the 'baby machine' method.
    Grzelak A; Skierski J; Bartosz G
    FEBS Lett; 2001 Mar; 492(1-2):123-6. PubMed ID: 11248249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of oxidative damage during replicative aging of the yeast Saccharomyces cerevisiae.
    Grzelak A; Macierzyńska E; Bartosz G
    Exp Gerontol; 2006 Sep; 41(9):813-8. PubMed ID: 16891074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of growth medium on the antioxidant defense of Saccharomyces cerevisiae.
    Macierzyńska E; Grzelak A; Bartosz G
    Cell Mol Biol Lett; 2007 Sep; 12(3):448-56. PubMed ID: 17361365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae.
    Jakubowski W; Biliński T; Bartosz G
    Free Radic Biol Med; 2000 Mar; 28(5):659-64. PubMed ID: 10754260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in electron transport potential, antioxidant defenses, and oxidant generation in young and senescent fetal lung fibroblasts (WI-38).
    Allen RG; Tresini M; Keogh BP; Doggett DL; Cristofalo VJ
    J Cell Physiol; 1999 Jul; 180(1):114-22. PubMed ID: 10362024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress during aging of the yeast in a stationary culture and its attenuation by antioxidants.
    Owsiak A; Bartosz G; Bilinski T
    Cell Biol Int; 2010 Jul; 34(7):731-6. PubMed ID: 20337598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of iron ions on the antioxidant enzyme activities in yeast Saccharomyces cerevisiae].
    Hospodar'ov DV; Lushchak VI
    Ukr Biokhim Zh (1999); 2004; 76(6):100-5. PubMed ID: 16350751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of antioxidant-deficient yeast to hypochlorite and chlorite.
    Kwolek-Mirek M; Bartosz G; Spickett CM
    Yeast; 2011 Aug; 28(8):595-609. PubMed ID: 21761455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of evidence of oxidative damage in antioxidant-deficient strains of Saccharomyces cerevisiae.
    Fortuniak A; Jakubowski W; Biliński T; Bartosz G
    Biochem Mol Biol Int; 1996 May; 38(6):1271-6. PubMed ID: 8739049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1deltasod2delta double mutants against oxidative damage.
    Manfredini V; Roehrs R; Peralba MC; Henriques JA; Saffi J; Ramos AL; Benfato MS
    Braz J Med Biol Res; 2004 Feb; 37(2):159-65. PubMed ID: 14762569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes.
    Semchyshyn HM; Miedzobrodzki J; Bayliak MM; Lozinska LM; Homza BV
    Carbohydr Res; 2014 Jan; 384():61-9. PubMed ID: 24361593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of senescent cells of Saccharomyces cerevisiae by centrifugal elutriation.
    Woldringh CL; Fluiter K; Huls PG
    Yeast; 1995 Apr; 11(4):361-9. PubMed ID: 7785337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.
    Raj A; Nachiappan V
    Antonie Van Leeuwenhoek; 2016 Jun; 109(6):841-54. PubMed ID: 27016252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium-induced oxidative stress in Saccharomyces cerevisiae.
    Muthukumar K; Nachiappan V
    Indian J Biochem Biophys; 2010 Dec; 47(6):383-7. PubMed ID: 21355423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae.
    de Oliveira IM; Zanotto-Filho A; Moreira JC; Bonatto D; Henriques JA
    Yeast; 2010 Feb; 27(2):89-102. PubMed ID: 19904831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process.
    Muid KA; Karakaya HÇ; Koc A
    Biochem Biophys Res Commun; 2014 Feb; 444(2):260-3. PubMed ID: 24462872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Acid stress increases the activity of superoxide dismutase and catalase in the yeast Saccharomyces cerevisiae].
    Abrat OB; Semchyshyn HM; Lushchak VI
    Ukr Biokhim Zh (1999); 2007; 79(2):17-23. PubMed ID: 18030745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae.
    Zhang L; Onda K; Imai R; Fukuda R; Horiuchi H; Ohta A
    Biochem Biophys Res Commun; 2003 Jul; 307(2):308-14. PubMed ID: 12859956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalase modifies yeast Saccharomyces cerevisiae response towards S-nitrosoglutathione-induced stress.
    Lushchak OV; Lushchak VI
    Redox Rep; 2008; 13(6):283-91. PubMed ID: 19017469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-carnosine enhanced reproductive potential of the Saccharomyces cerevisiae yeast growing on medium containing glucose as a source of carbon.
    Kwolek-Mirek M; Molon M; Kaszycki P; Zadrag-Tecza R
    Biogerontology; 2016 Aug; 17(4):737-47. PubMed ID: 27040824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.