BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11248387)

  • 21. Evidence for cascades of perturbation and adaptation in the metabolic genes of higher termite gut symbionts.
    Zhang X; Leadbetter JR
    mBio; 2012; 3(4):. PubMed ID: 22911968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Species-level termite methane production rates.
    Zhou Y; Staver AC; Davies AB
    Ecology; 2023 Feb; 104(2):e3905. PubMed ID: 36314967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing.
    Diouf M; Roy V; Mora P; Frechault S; Lefebvre T; Hervé V; Rouland-Lefèvre C; Miambi E
    PLoS One; 2015; 10(10):e0140014. PubMed ID: 26444989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus.
    Hongoh Y; Ekpornprasit L; Inoue T; Moriya S; Trakulnaleamsai S; Ohkuma M; Noparatnaraporn N; Kudo T
    Mol Ecol; 2006 Feb; 15(2):505-16. PubMed ID: 16448416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genes for selenium dependent and independent formate dehydrogenase in the gut microbial communities of three lower, wood-feeding termites and a wood-feeding roach.
    Zhang X; Matson EG; Leadbetter JR
    Environ Microbiol; 2011 Feb; 13(2):307-23. PubMed ID: 20819103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Termites Are Associated with External Species-Specific Bacterial Communities.
    Soukup P; Větrovský T; Stiblik P; Votýpková K; Chakraborty A; Sillam-Dussès D; Kolařík M; Odriozola I; Lo N; Baldrian P; Šobotník J; Bourguignon T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33097518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites.
    Yamada A; Inoue T; Noda S; Hongoh Y; Ohkuma M
    Mol Ecol; 2007 Sep; 16(18):3768-77. PubMed ID: 17850544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites.
    Richards C; Otani S; Mikaelyan A; Poulsen M
    PLoS One; 2017; 12(10):e0185745. PubMed ID: 28973021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites.
    Hervé V; Liu P; Dietrich C; Sillam-Dussès D; Stiblik P; Šobotník J; Brune A
    PeerJ; 2020; 8():e8614. PubMed ID: 32095380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rampant Host Switching Shaped the Termite Gut Microbiome.
    Bourguignon T; Lo N; Dietrich C; Šobotník J; Sidek S; Roisin Y; Brune A; Evans TA
    Curr Biol; 2018 Feb; 28(4):649-654.e2. PubMed ID: 29429621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Taxonomic features and comparisons of the gut microbiome from two edible fungus-farming termites (Macrotermes falciger; M. natalensis) harvested in the Vhembe district of Limpopo, South Africa.
    Schnorr SL; Hofman CA; Netshifhefhe SR; Duncan FD; Honap TP; Lesnik J; Lewis CM
    BMC Microbiol; 2019 Jul; 19(1):164. PubMed ID: 31315576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution.
    Brune A; Dietrich C
    Annu Rev Microbiol; 2015; 69():145-66. PubMed ID: 26195303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites.
    Brauman A; Kane MD; Labat M; Breznak JA
    Science; 1992 Sep; 257(5075):1384-7. PubMed ID: 17738281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.
    Fall S; Hamelin J; Ndiaye F; Assigbetse K; Aragno M; Chotte JL; Brauman A
    Appl Environ Microbiol; 2007 Aug; 73(16):5199-208. PubMed ID: 17574999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites.
    Rossmassler K; Dietrich C; Thompson C; Mikaelyan A; Nonoh JO; Scheffrahn RH; Sillam-Dussès D; Brune A
    Microbiome; 2015 Nov; 3():56. PubMed ID: 26607965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community.
    Tikhe CV; Husseneder C
    Front Microbiol; 2017; 8():2548. PubMed ID: 29354098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of bacterial communities in the alkaline gut segment among various species of higher termites.
    Thongaram T; Hongoh Y; Kosono S; Ohkuma M; Trakulnaleamsai S; Noparatnaraporn N; Kudo T
    Extremophiles; 2005 Jun; 9(3):229-38. PubMed ID: 15856134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils.
    Makonde HM; Mwirichia R; Osiemo Z; Boga HI; Klenk HP
    Springerplus; 2015; 4():471. PubMed ID: 26355944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Natural High-Sugar Diet Has Different Effects on the Prokaryotic Community Structures of Lower and Higher Termites (Blattaria).
    Zeng W; Liu B; Zhong J; Li Q; Li Z
    Environ Entomol; 2020 Feb; 49(1):21-32. PubMed ID: 31782953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lower Termite Associations with Microbes: Synergy, Protection, and Interplay.
    Peterson BF; Scharf ME
    Front Microbiol; 2016; 7():422. PubMed ID: 27092110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.