BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11248929)

  • 1. Active control of locomotion facilitates nonvisual navigation.
    Philbeck JW; Klatzky RL; Behrmann M; Loomis JM; Goodridge J
    J Exp Psychol Hum Percept Perform; 2001 Feb; 27(1):141-53. PubMed ID: 11248929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial performance of unilateral vestibular defective patients in nonvisual versus visual navigation.
    Péruch P; Borel L; Gaunet F; Thinus-Blanc G; Magnan J; Lacour M
    J Vestib Res; 1999; 9(1):37-47. PubMed ID: 10334015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What visual information is used for navigation around obstacles in a cluttered environment?
    Patla AE; Tomescu SS; Ishac MG
    Can J Physiol Pharmacol; 2004; 82(8-9):682-92. PubMed ID: 15523525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Path integration deficits during linear locomotion after human medial temporal lobectomy.
    Philbeck JW; Behrmann M; Levy L; Potolicchio SJ; Caputy AJ
    J Cogn Neurosci; 2004 May; 16(4):510-20. PubMed ID: 15165344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memory use in insect visual navigation.
    Collett TS; Collett M
    Nat Rev Neurosci; 2002 Jul; 3(7):542-52. PubMed ID: 12094210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of nonvisual information to simple place navigation and distance estimation: an examination of path integration.
    Bigel MG; Ellard CG
    Can J Exp Psychol; 2000 Sep; 54(3):172-85. PubMed ID: 11021037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of active selection in human path integration.
    Wan X; Wang RF; Crowell JA
    J Vis; 2010 Sep; 10(11):25. PubMed ID: 20884520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of visual and nonvisual information in the control of locomotion.
    Wilkie RM; Wann JP
    J Exp Psychol Hum Percept Perform; 2005 Oct; 31(5):901-11. PubMed ID: 16262487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts.
    Foo P; Warren WH; Duchon A; Tarr MJ
    J Exp Psychol Learn Mem Cogn; 2005 Mar; 31(2):195-215. PubMed ID: 15755239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual homing in the absence of feature-based landmark information.
    Gillner S; Weiss AM; Mallot HA
    Cognition; 2008 Oct; 109(1):105-22. PubMed ID: 18804202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Middle-old and old-old retirement dwelling adults respond differently to locomotor challenges in cluttered environments.
    Reed RJ; Lowrey CR; Vallis LA
    Gait Posture; 2006 Jun; 23(4):486-91. PubMed ID: 16098746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic spatial updating during locomotion without vision.
    Farrell MJ; Thomson JA
    Q J Exp Psychol A; 1998 Aug; 51(3):637-54. PubMed ID: 9745381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Judgments of path, not heading, guide locomotion.
    Wilkie RM; Wann JP
    J Exp Psychol Hum Percept Perform; 2006 Feb; 32(1):88-96. PubMed ID: 16478328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can a visual representation support the online control of memory-dependent reaching? Evident from a variable spatial mapping paradigm.
    Heath M; Westwood DA
    Motor Control; 2003 Oct; 7(4):346-61. PubMed ID: 14999133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of dual tasks in locomotor path integration.
    Glasauer S; Stein A; Günther AL; Flanagin VL; Jahn K; Brandt T
    Ann N Y Acad Sci; 2009 May; 1164():201-5. PubMed ID: 19645900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment.
    Zanbaka CA; Lok BC; Babu SV; Ulinski AC; Hodges LF
    IEEE Trans Vis Comput Graph; 2005; 11(6):694-705. PubMed ID: 16270862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of active locomotion in space perception.
    Yamamoto N
    Cogn Process; 2012 Aug; 13 Suppl 1():S365-8. PubMed ID: 22802033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral visual cues affect minimum-foot-clearance during overground locomotion.
    Graci V; Elliott DB; Buckley JG
    Gait Posture; 2009 Oct; 30(3):370-4. PubMed ID: 19628392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigation through vector addition.
    Etienne AS; Maurer R; Berlie J; Reverdin B; Rowe T; Georgakopoulos J; Séguinot V
    Nature; 1998 Nov; 396(6707):161-4. PubMed ID: 9823894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path information effects in visual and proprioceptive spatial learning.
    Yamamoto N; Shelton AL
    Acta Psychol (Amst); 2007 Jul; 125(3):346-60. PubMed ID: 17067542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.