These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 11249203)
1. Dome formation and tubule morphogenesis by Xenopus kidney A6 cell cultures exposed to microgravity simulated with a 3D-clinostat and to hypergravity. Ichigi J; Asashima M In Vitro Cell Dev Biol Anim; 2001 Jan; 37(1):31-44. PubMed ID: 11249203 [TBL] [Abstract][Full Text] [Related]
2. Proliferation and differentiation of Xenopus A6 cells under hypergravity as revealed by time-lapse imaging. Tanaka M; Asashima M; Atomi Y In Vitro Cell Dev Biol Anim; 2003; 39(1-2):71-9. PubMed ID: 12892530 [TBL] [Abstract][Full Text] [Related]
3. [The gene expressions and morphogenesis of Xenopus kidney A6 cells cultured in simulated microgravity and hypergravity]. Ichigi J; Asashima M Biol Sci Space; 2000 Oct; 14(3):198-9. PubMed ID: 12561859 [No Abstract] [Full Text] [Related]
4. Global and temporal regulation of gene expression in Xenopus kidney cells in response to presumed microgravity generated by 3D clinostats. Kitamoto J; Fukui A; Asashima M Biol Sci Space; 2004 Nov; 18(3):152-3. PubMed ID: 15858366 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a gene respondent to clinorotation in Xenopus A6 cells. Kyuno J; Fukui A; Michiue T; Asashima M Biol Sci Space; 2003 Oct; 17(3):171-2. PubMed ID: 14676358 [TBL] [Abstract][Full Text] [Related]
6. Temporal regulation of global gene expression and cellular morphology in Xenopus kidney cells in response to clinorotation. Kitamoto J; Fukui A; Asashima M Adv Space Res; 2005; 35(9):1654-61. PubMed ID: 16175731 [TBL] [Abstract][Full Text] [Related]
7. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity. Fejtek M; Souza K; Neff A; Wassersug R J Exp Biol; 1998 Jun; 201(Pt 12):1917-26. PubMed ID: 9722430 [TBL] [Abstract][Full Text] [Related]
8. Alteration of calcium signalling in cardiomyocyte induced by simulated microgravity and hypergravity. Liu C; Zhong G; Zhou Y; Yang Y; Tan Y; Li Y; Gao X; Sun W; Li J; Jin X; Cao D; Yuan X; Liu Z; Liang S; Li Y; Du R; Zhao Y; Xue J; Zhao D; Song J; Ling S; Li Y Cell Prolif; 2020 Mar; 53(3):e12783. PubMed ID: 32101357 [TBL] [Abstract][Full Text] [Related]
9. Leaf senescence under various gravity conditions: relevance to the dynamics of plant hormones. Miyamoto K; Yuda T; Shimazu T; Ueda J Adv Space Res; 2001; 27(5):1017-22. PubMed ID: 11596632 [TBL] [Abstract][Full Text] [Related]
10. Effects of gravity on early development. Neubert J; Schatz A; Bromeis B; Linke-Hommes A Adv Space Res; 1998; 22(2):265-71. PubMed ID: 11541404 [TBL] [Abstract][Full Text] [Related]
11. Effect of hyper- and microgravity on collagen post-translational controls of MC3T3-E1 osteoblasts. Saito M; Soshi S; Fujii K J Bone Miner Res; 2003 Sep; 18(9):1695-705. PubMed ID: 12968680 [TBL] [Abstract][Full Text] [Related]
12. Rapid Cellular Perception of Gravitational Forces in Human Jurkat T Cells and Transduction into Gene Expression Regulation. Thiel CS; Christoffel S; Tauber S; Vahlensieck C; Zélicourt D; Layer LE; Lauber B; Polzer J; Ullrich O Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31947583 [TBL] [Abstract][Full Text] [Related]
13. Osteoclastic and Osteoblastic Responses to Hypergravity and Microgravity: Analysis Using Goldfish Scales as a Bone Model. Yamamoto T; Ikegame M; Furusawa Y; Tabuchi Y; Hatano K; Watanabe K; Kawago U; Hirayama J; Yano S; Sekiguchi T; Kitamura KI; Endo M; Nagami A; Matsubara H; Maruyama Y; Hattori A; Suzuki N Zoolog Sci; 2022 Aug; 39(4):. PubMed ID: 35960027 [TBL] [Abstract][Full Text] [Related]
14. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures. Kamal KY; Herranz R; van Loon JJWA; Medina FJ Sci Rep; 2018 Apr; 8(1):6424. PubMed ID: 29686401 [TBL] [Abstract][Full Text] [Related]
15. Sperm Motility of Mice under Simulated Microgravity and Hypergravity. Ogneva IV; Usik MA; Biryukov NS; Zhdankina YS Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32709012 [TBL] [Abstract][Full Text] [Related]
16. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Herranz R; Manzano AI; van Loon JJ; Christianen PC; Medina FJ Astrobiology; 2013 Mar; 13(3):217-24. PubMed ID: 23510084 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions. Li S; Shi Q; Liu G; Zhang W; Wang Z; Wang Y; Dai K J Appl Physiol (1985); 2010 May; 108(5):1241-9. PubMed ID: 20133435 [TBL] [Abstract][Full Text] [Related]
18. Planarians sense simulated microgravity and hypergravity. Adell T; Saló E; van Loon JJ; Auletta G Biomed Res Int; 2014; 2014():679672. PubMed ID: 25309918 [TBL] [Abstract][Full Text] [Related]
19. Use of Reduced Gravity Simulators for Plant Biological Studies. Herranz R; Valbuena MA; Manzano A; Kamal KY; Villacampa A; Ciska M; van Loon JJWA; Medina FJ Methods Mol Biol; 2022; 2368():241-265. PubMed ID: 34647260 [TBL] [Abstract][Full Text] [Related]
20. Early development of Xenopus embryos is affected by simulated gravity. Yokota H; Neff AW; Malacinski GM Adv Space Res; 1994; 14(8):249-55. PubMed ID: 11537924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]