These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11249833)

  • 21. Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 May; 137(5):2698-725. PubMed ID: 25994701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects.
    Dalhoff E; Turcanu D; Zenner HP; Gummer AW
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1546-51. PubMed ID: 17242353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Experimental study of vibration analysis in middle ear models by holographic interferometry. Effects of the cross-sectioned area of aditus on the vibration of tympanic membrane].
    Ishihara M
    Nihon Jibiinkoka Gakkai Kaiho; 1989 May; 92(5):726-35. PubMed ID: 2614565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. When signal meets noise: immunity of the frog ear to interference.
    Penna M; Gormaz JP; Narins PM
    Naturwissenschaften; 2009 Jul; 96(7):835-43. PubMed ID: 19404599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanics of a single-ossicle ear: I. The extra-stapedius of the pigeon.
    Gummer AW; Smolders JW; Klinke R
    Hear Res; 1989 May; 39(1-2):1-13. PubMed ID: 2737958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears: a dynamic model study of the chicken middle ear.
    Muyshondt PGG; Dirckx JJJ
    Biomech Model Mechanobiol; 2020 Feb; 19(1):233-249. PubMed ID: 31372910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tympanic membrane collagen fibers: a key to high-frequency sound conduction.
    O'Connor KN; Tam M; Blevins NH; Puria S
    Laryngoscope; 2008 Mar; 118(3):483-90. PubMed ID: 18091335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasonic frogs show extraordinary sex differences in auditory frequency sensitivity.
    Shen JX; Xu ZM; Yu ZL; Wang S; Zheng DZ; Fan SC
    Nat Commun; 2011 Jun; 2():342. PubMed ID: 21673663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effects of the perforation of the tympanic membrane on its vibration--with special reference to an experimental study by holographic interferometry].
    Maeta M
    Nihon Jibiinkoka Gakkai Kaiho; 1991 Feb; 94(2):231-40. PubMed ID: 2037952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A finite element analysis of the natural frequencies of vibration of the human tympanic membrane. Part I.
    Williams KR; Lesser TH
    Br J Audiol; 1990 Oct; 24(5):319-27. PubMed ID: 2265302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anatomical Basis of Dynamic Modulation of Tympanic Tension in the Water Monitor Lizard, Varanus salvator.
    Han D; Young BA
    Anat Rec (Hoboken); 2016 Sep; 299(9):1270-80. PubMed ID: 27312415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinearity in eardrum vibration as a function of frequency and sound pressure.
    Aerts JR; Dirckx JJ
    Hear Res; 2010 May; 263(1-2):26-32. PubMed ID: 20026266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New data on the motion of the normal and reconstructed tympanic membrane.
    Rosowski JJ; Cheng JT; Merchant SN; Harrington E; Furlong C
    Otol Neurotol; 2011 Dec; 32(9):1559-67. PubMed ID: 21956597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sexual dimorphism in external morphology of the American bullfrog Rana (Aquarana) catesbeiana and the possibility of sex determination based on tympanic membrane/eye size ratio.
    Asahara M; Obayashi Y; Suzuki A; Kamigaki A; Ikeda T
    J Vet Med Sci; 2020 Aug; 82(8):1160-1164. PubMed ID: 32641603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pure ultrasonic communication in an endemic Bornean frog.
    Arch VS; Grafe TU; Gridi-Papp M; Narins PM
    PLoS One; 2009; 4(4):e5413. PubMed ID: 19401782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The discordant eardrum.
    Fay JP; Puria S; Steele CR
    Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19743-8. PubMed ID: 17170142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial hearing in Cope's gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations.
    Caldwell MS; Lee N; Schrode KM; Johns AR; Christensen-Dalsgaard J; Bee MA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Apr; 200(4):285-304. PubMed ID: 24504183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sound production and hearing in the blue cracker butterfly Hamadryas feronia (Lepidoptera, nymphalidae) from Venezuela.
    Yack JE; Otero LD; Dawson JW; Surlykke A; Fullard JH
    J Exp Biol; 2000 Dec; 203(Pt 24):3689-702. PubMed ID: 11076733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of single-ossicle ear flexibility and eardrum cone orientation on quasi-static behavior of the chicken middle ear.
    Muyshondt PGG; Aerts P; Dirckx JJJ
    Hear Res; 2019 Jul; 378():13-22. PubMed ID: 30482533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.