These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 11249849)

  • 1. Influence of Ca(2+)-activated K(+) channels on rat renal arteriolar responses to depolarizing agonists.
    Fallet RW; Bast JP; Fujiwara K; Ishii N; Sansom SC; Carmines PK
    Am J Physiol Renal Physiol; 2001 Apr; 280(4):F583-91. PubMed ID: 11249849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal arteriolar angiotensin responses during varied adenosine receptor activation.
    Carmines PK; Inscho EW
    Hypertension; 1994 Jan; 23(1 Suppl):I114-9. PubMed ID: 8282342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of cyclo-oxygenase blockade on juxtamedullary microvascular responses to angiotensin II in rat kidney.
    Harrison-Bernard LM; Carmines PK
    Clin Exp Pharmacol Physiol; 1995 Oct; 22(10):732-8. PubMed ID: 8575109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium mobilization contributes to pressure-mediated afferent arteriolar vasoconstriction.
    Inscho EW; Cook AK; Mui V; Imig JD
    Hypertension; 1998 Jan; 31(1 Pt 2):421-8. PubMed ID: 9453339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of tubuloglomerular feedback to renal arteriolar angiotensin II responsiveness.
    Ikenaga H; Fallet RW; Carmines PK
    Kidney Int; 1996 Jan; 49(1):34-9. PubMed ID: 8770946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin.
    Fallet RW; Ikenaga H; Bast JP; Carmines PK
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F545-51. PubMed ID: 15536171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Navar LG
    Hypertension; 1999 Jan; 33(1 Pt 2):462-6. PubMed ID: 9931148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus.
    Schoonmaker GC; Fallet RW; Carmines PK
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F302-9. PubMed ID: 10662734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Src family kinase involvement in rat preglomerular microvascular contractile and [Ca2+]i responses to ANG II.
    Che Q; Carmines PK
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F658-64. PubMed ID: 15572518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renovascular BK(Ca) channels are not activated in vivo under resting conditions and during agonist stimulation.
    Magnusson L; Sorensen CM; Braunstein TH; Holstein-Rathlou NH; Salomonsson M
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R345-53. PubMed ID: 16973937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient receptor potential channels in rat renal microcirculation: actions of angiotensin II.
    Takenaka T; Suzuki H; Okada H; Inoue T; Kanno Y; Ozawa Y; Hayashi K; Saruta T
    Kidney Int; 2002 Aug; 62(2):558-65. PubMed ID: 12110018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone.
    Nakamura A; Hayashi K; Ozawa Y; Fujiwara K; Okubo K; Kanda T; Wakino S; Saruta T
    J Vasc Res; 2003; 40(3):244-51. PubMed ID: 12902637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores.
    Inscho EW; Imig JD; Cook AK
    Hypertension; 1997 Jan; 29(1 Pt 2):222-7. PubMed ID: 9039106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine kinase involvement in renal arteriolar constrictor responses to angiotensin II.
    Carmines PK; Fallet RW; Che Q; Fujiwara K
    Hypertension; 2001 Feb; 37(2 Pt 2):569-73. PubMed ID: 11230336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal arteriolar contractile responses to angiotensin II in rats with poorly controlled diabetes mellitus.
    Carmines PK; Ohishi K
    Clin Exp Pharmacol Physiol; 1999 Nov; 26(11):877-82. PubMed ID: 10561808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin II-mediated constriction of afferent and efferent arterioles involves T-type Ca2+ channel activation.
    Feng MG; Navar LG
    Am J Nephrol; 2004; 24(6):641-8. PubMed ID: 15627720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanosensitive cation channels mediate afferent arteriolar myogenic constriction in the isolated rat kidney.
    Takenaka T; Suzuki H; Okada H; Hayashi K; Kanno Y; Saruta T
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):245-53. PubMed ID: 9679178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II.
    Carmines PK; Navar LG
    Am J Physiol; 1989 Jun; 256(6 Pt 2):F1015-20. PubMed ID: 2544103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EDRF-angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles.
    Ohishi K; Carmines PK; Inscho EW; Navar LG
    Am J Physiol; 1992 Nov; 263(5 Pt 2):F900-6. PubMed ID: 1332506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane potential measurements in renal afferent and efferent arterioles: actions of angiotensin II.
    Loutzenhiser R; Chilton L; Trottier G
    Am J Physiol; 1997 Aug; 273(2 Pt 2):F307-14. PubMed ID: 9277592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.