These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11250029)

  • 21. Engineering a thermostable protein via optimization of charge-charge interactions on the protein surface.
    Loladze VV; Ibarra-Molero B; Sanchez-Ruiz JM; Makhatadze GI
    Biochemistry; 1999 Dec; 38(50):16419-23. PubMed ID: 10600102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability.
    Thompson MJ; Eisenberg D
    J Mol Biol; 1999 Jul; 290(2):595-604. PubMed ID: 10390356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consensus-based engineering of protein stability: from intrabodies to thermostable enzymes.
    Steipe B
    Methods Enzymol; 2004; 388():176-86. PubMed ID: 15289071
    [No Abstract]   [Full Text] [Related]  

  • 24. Modulation of protein stability and aggregation properties by surface charge engineering.
    Raghunathan G; Sokalingam S; Soundrarajan N; Madan B; Munussami G; Lee SG
    Mol Biosyst; 2013 Sep; 9(9):2379-89. PubMed ID: 23861008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering proteins with tunable thermodynamic and kinetic stabilities.
    Pey AL; Rodriguez-Larrea D; Bomke S; Dammers S; Godoy-Ruiz R; Garcia-Mira MM; Sanchez-Ruiz JM
    Proteins; 2008 Apr; 71(1):165-74. PubMed ID: 17932922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ProtDataTherm: A database for thermostability analysis and engineering of proteins.
    Pezeshgi Modarres H; Mofrad MR; Sanati-Nezhad A
    PLoS One; 2018; 13(1):e0191222. PubMed ID: 29377907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins.
    Gribenko AV; Makhatadze GI
    J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impacts of the charged residues mutation S48E/N62H on the thermostability and unfolding behavior of cold shock protein: insights from molecular dynamics simulation with Gō model.
    Su JG; Han XM; Zhao SX; Hou YX; Li XY; Qi LS; Wang JH
    J Mol Model; 2016 Apr; 22(4):91. PubMed ID: 27021210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability.
    Delbrück H; Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2001 Oct; 313(2):359-69. PubMed ID: 11800562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origins of the high stability of an in vitro-selected cold-shock protein.
    Martin A; Kather I; Schmid FX
    J Mol Biol; 2002 May; 318(5):1341-9. PubMed ID: 12083522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational approach for the rational design of stable proteins and enzymes: optimization of surface charge-charge interactions.
    Schweiker KL; Makhatadze GI
    Methods Enzymol; 2009; 454():175-211. PubMed ID: 19216927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specificity versus stability in computational protein design.
    Bolon DN; Grant RA; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12724-9. PubMed ID: 16129838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Turning a mesophilic protein into a thermophilic one: a computational approach based on 3D structural features.
    Basu S; Sen S
    J Chem Inf Model; 2009 Jul; 49(7):1741-50. PubMed ID: 19586011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TKSA-MC: A web server for rational mutation through the optimization of protein charge interactions.
    Contessoto VG; de Oliveira VM; Fernandes BR; Slade GG; Leite VBP
    Proteins; 2018 Nov; 86(11):1184-1188. PubMed ID: 30218467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rational design of faster associating and tighter binding protein complexes.
    Selzer T; Albeck S; Schreiber G
    Nat Struct Biol; 2000 Jul; 7(7):537-41. PubMed ID: 10876236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein stabilization by the rational design of surface charge-charge interactions.
    Schweiker KL; Makhatadze GI
    Methods Mol Biol; 2009; 490():261-83. PubMed ID: 19157087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermostabilizing mutations preferentially occur at structural weak spots with a high mutation ratio.
    Rathi PC; Radestock S; Gohlke H
    J Biotechnol; 2012 Jun; 159(3):135-44. PubMed ID: 22326626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Consensus protein design.
    Porebski BT; Buckle AM
    Protein Eng Des Sel; 2016 Jul; 29(7):245-51. PubMed ID: 27274091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy estimation in protein design.
    Mendes J; Guerois R; Serrano L
    Curr Opin Struct Biol; 2002 Aug; 12(4):441-6. PubMed ID: 12163065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.