These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 11250154)

  • 1. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein.
    Schrammeijer B; Risseeuw E; Pansegrau W; Regensburg-Tuïnk TJ; Crosby WL; Hooykaas PJ
    Curr Biol; 2001 Feb; 11(4):258-62. PubMed ID: 11250154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3.
    Schrammeijer B; den Dulk-Ras A; Vergunst AC; Jurado Jácome E; Hooykaas PJ
    Nucleic Acids Res; 2003 Feb; 31(3):860-8. PubMed ID: 12560481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation.
    Anand A; Rojas CM; Tang Y; Mysore KS
    New Phytol; 2012 Jul; 195(1):203-16. PubMed ID: 22486382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1.
    Vergunst AC; van Lier MC; den Dulk-Ras A; Hooykaas PJ
    Plant Physiol; 2003 Nov; 133(3):978-88. PubMed ID: 14551327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium.
    Tzfira T; Vaidya M; Citovsky V
    Nature; 2004 Sep; 431(7004):87-92. PubMed ID: 15343337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VirB/D4-dependent protein translocation from Agrobacterium into plant cells.
    Vergunst AC; Schrammeijer B; den Dulk-Ras A; de Vlaam CM; Regensburg-Tuïnk TJ; Hooykaas PJ
    Science; 2000 Nov; 290(5493):979-82. PubMed ID: 11062129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VirD4-independent transformation by CloDF13 evidences an unknown factor required for the genetic colonization of plants via Agrobacterium.
    Escudero J; Den Dulk-Ras A; Regensburg-Tuïnk TJ; Hooykaas PJ
    Mol Microbiol; 2003 Feb; 47(4):891-901. PubMed ID: 12581347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein.
    Lacroix B; Citovsky V
    Sci Rep; 2015 Nov; 5():16610. PubMed ID: 26586289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The P25 pathogenicity factor of Beet necrotic yellow vein virus targets the sugar beet 26S proteasome involved in the induction of a hypersensitive resistance response via interaction with an F-box protein.
    Thiel H; Hleibieh K; Gilmer D; Varrelmann M
    Mol Plant Microbe Interact; 2012 Aug; 25(8):1058-72. PubMed ID: 22512382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrobacterium induces expression of a host F-box protein required for tumorigenicity.
    Zaltsman A; Krichevsky A; Loyter A; Citovsky V
    Cell Host Microbe; 2010 Mar; 7(3):197-209. PubMed ID: 20227663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Agrobacterium F-Box Protein Effector VirF Destabilizes the Arabidopsis GLABROUS1 Enhancer/Binding Protein-Like Transcription Factor VFP4, a Transcriptional Activator of Defense Response Genes.
    García-Cano E; Hak H; Magori S; Lazarowitz SG; Citovsky V
    Mol Plant Microbe Interact; 2018 May; 31(5):576-586. PubMed ID: 29264953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agrobacterium tumefaciens-mediated transformation of yeast.
    Piers KL; Heath JD; Liang X; Stephens KM; Nester EW
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1613-8. PubMed ID: 8643679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system.
    Simone M; McCullen CA; Stahl LE; Binns AN
    Mol Microbiol; 2001 Sep; 41(6):1283-93. PubMed ID: 11580834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase.
    Farrás R; Ferrando A; Jásik J; Kleinow T; Okrész L; Tiburcio A; Salchert K; del Pozo C; Schell J; Koncz C
    EMBO J; 2001 Jun; 20(11):2742-56. PubMed ID: 11387208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agrobacterium-Mediated Transformation of Yeast and Fungi.
    Hooykaas PJJ; van Heusden GPH; Niu X; Reza Roushan M; Soltani J; Zhang X; van der Zaal BJ
    Curr Top Microbiol Immunol; 2018; 418():349-374. PubMed ID: 29770864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of Arabidopsis thaliana SKP1 homologues in yeast inactivates the Mig1 repressor by destabilising the F-box protein Grr1.
    Schouten J; de Kam RJ; Fetter K; Hoge JH
    Mol Gen Genet; 2000 Mar; 263(2):309-19. PubMed ID: 10778750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conjugal intermediate of plasmid RSF1010 inhibits Agrobacterium tumefaciens virulence and VirB-dependent export of VirE2.
    Stahl LE; Jacobs A; Binns AN
    J Bacteriol; 1998 Aug; 180(15):3933-9. PubMed ID: 9683491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF locus.
    Melchers LS; Maroney MJ; den Dulk-Ras A; Thompson DV; van Vuuren HA; Schilperoort RA; Hooykaas PJ
    Plant Mol Biol; 1990 Feb; 14(2):249-59. PubMed ID: 2101693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens.
    Regensburg-Tuïnk AJ; Hooykaas PJ
    Nature; 1993 May; 363(6424):69-71. PubMed ID: 8479538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions.
    Hwang HH; Liu YT; Huang SC; Tung CY; Huang FC; Tsai YL; Cheng TF; Lai EM
    Phytopathology; 2015 Feb; 105(2):160-8. PubMed ID: 25163013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.