BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11250908)

  • 1. The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation.
    Qiu H; Dong J; Hu C; Francklyn CS; Hinnebusch AG
    EMBO J; 2001 Mar; 20(6):1425-38. PubMed ID: 11250908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations that bypass tRNA binding activate the intrinsically defective kinase domain in GCN2.
    Qiu H; Hu C; Dong J; Hinnebusch AG
    Genes Dev; 2002 May; 16(10):1271-80. PubMed ID: 12023305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimerization by translation initiation factor 2 kinase GCN2 is mediated by interactions in the C-terminal ribosome-binding region and the protein kinase domain.
    Qiu H; Garcia-Barrio MT; Hinnebusch AG
    Mol Cell Biol; 1998 May; 18(5):2697-711. PubMed ID: 9566889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between the tRNA-binding and C-terminal domains of Yeast Gcn2 regulates kinase activity in vivo.
    Lageix S; Zhang J; Rothenburg S; Hinnebusch AG
    PLoS Genet; 2015 Feb; 11(2):e1004991. PubMed ID: 25695491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain.
    Dong J; Qiu H; Garcia-Barrio M; Anderson J; Hinnebusch AG
    Mol Cell; 2000 Aug; 6(2):269-79. PubMed ID: 10983975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids.
    Wek SA; Zhu S; Wek RC
    Mol Cell Biol; 1995 Aug; 15(8):4497-506. PubMed ID: 7623840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations activating the yeast eIF-2 alpha kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases.
    Ramirez M; Wek RC; Vazquez de Aldana CR; Jackson BM; Freeman B; Hinnebusch AG
    Mol Cell Biol; 1992 Dec; 12(12):5801-15. PubMed ID: 1448107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability.
    Wek RC; Jackson BM; Hinnebusch AG
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4579-83. PubMed ID: 2660141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2.
    Zhu S; Sobolev AY; Wek RC
    J Biol Chem; 1996 Oct; 271(40):24989-94. PubMed ID: 8798780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation.
    Garcia-Barrio M; Dong J; Ufano S; Hinnebusch AG
    EMBO J; 2000 Apr; 19(8):1887-99. PubMed ID: 10775272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The HisRS-like domain of GCN2 is a pseudoenzyme that can bind uncharged tRNA.
    Yin JZ; Keszei AFA; Houliston S; Filandr F; Beenstock J; Daou S; Kitaygorodsky J; Schriemer DC; Mazhab-Jafari MT; Gingras AC; Sicheri F
    Structure; 2024 Jun; 32(6):795-811.e6. PubMed ID: 38531363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells.
    Sattlegger E; Hinnebusch AG
    EMBO J; 2000 Dec; 19(23):6622-33. PubMed ID: 11101534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression.
    Wek RC; Ramirez M; Jackson BM; Hinnebusch AG
    Mol Cell Biol; 1990 Jun; 10(6):2820-31. PubMed ID: 2188100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha.
    Sood R; Porter AC; Olsen DA; Cavener DR; Wek RC
    Genetics; 2000 Feb; 154(2):787-801. PubMed ID: 10655230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2alpha protein kinase GCN2.
    Padyana AK; Qiu H; Roll-Mecak A; Hinnebusch AG; Burley SK
    J Biol Chem; 2005 Aug; 280(32):29289-99. PubMed ID: 15964839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serine 577 is phosphorylated and negatively affects the tRNA binding and eIF2alpha kinase activities of GCN2.
    Garcia-Barrio M; Dong J; Cherkasova VA; Zhang X; Zhang F; Ufano S; Lai R; Qin J; Hinnebusch AG
    J Biol Chem; 2002 Aug; 277(34):30675-83. PubMed ID: 12070158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G-1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase.
    Connolly SA; Rosen AE; Musier-Forsyth K; Francklyn CS
    Biochemistry; 2004 Feb; 43(4):962-9. PubMed ID: 14744140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced interaction between pseudokinase and kinase domains in Gcn2 stimulates eIF2α phosphorylation in starved cells.
    Lageix S; Rothenburg S; Dever TE; Hinnebusch AG
    PLoS Genet; 2014 May; 10(5):e1004326. PubMed ID: 24811037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimerization is required for activation of eIF2 kinase Gcn2 in response to diverse environmental stress conditions.
    Narasimhan J; Staschke KA; Wek RC
    J Biol Chem; 2004 May; 279(22):22820-32. PubMed ID: 15010461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histidyl-tRNA synthetase.
    Freist W; Verhey JF; Rühlmann A; Gauss DH; Arnez JG
    Biol Chem; 1999 Jun; 380(6):623-46. PubMed ID: 10430027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.