BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 11251047)

  • 1. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel.
    Kubo Y; Murata Y
    J Physiol; 2001 Mar; 531(Pt 3):645-60. PubMed ID: 11251047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2002 Nov; 120(5):677-93. PubMed ID: 12407079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A weakly inward rectifying potassium channel of the salmon brain. Glutamate 179 in the second transmembrane domain is insufficient for strong rectification.
    Kubo Y; Miyashita T; Kubokawa K
    J Biol Chem; 1996 Jun; 271(26):15729-35. PubMed ID: 8663136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines.
    Lopatin AN; Makhina EN; Nichols CG
    J Gen Physiol; 1995 Nov; 106(5):923-55. PubMed ID: 8648298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels.
    Makary SM; Claydon TW; Enkvetchakul D; Nichols CG; Boyett MR
    J Physiol; 2005 Nov; 568(Pt 3):749-66. PubMed ID: 16109731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inward rectification by polyamines in mouse Kir2.1 channels: synergy between blocking components.
    Xie LH; John SA; Weiss JN
    J Physiol; 2003 Jul; 550(Pt 1):67-82. PubMed ID: 12740427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes.
    Shieh RC
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):241-52. PubMed ID: 10896715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatics in the cytoplasmic pore produce intrinsic inward rectification in kir2.1 channels.
    Yeh SH; Chang HK; Shieh RC
    J Gen Physiol; 2005 Dec; 126(6):551-62. PubMed ID: 16316974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel.
    Yang J; Jan YN; Jan LY
    Neuron; 1995 May; 14(5):1047-54. PubMed ID: 7748552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes.
    Shieh RC; Chang JC; Arreola J
    Biophys J; 1998 Nov; 75(5):2313-22. PubMed ID: 9788926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a site involved in the block by extracellular Mg(2+) and Ba(2+) as well as permeation of K(+) in the Kir2.1 K(+) channel.
    Murata Y; Fujiwara Y; Kubo Y
    J Physiol; 2002 Nov; 544(3):665-77. PubMed ID: 12411513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Kir2.1 channel populations with different sensitivities to Mg(2+) and polyamine block: a model for the cardiac strong inward rectifier K(+) channel.
    Yan DH; Ishihara K
    J Physiol; 2005 Mar; 563(Pt 3):725-44. PubMed ID: 15618275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1.
    Taglialatela M; Ficker E; Wible BA; Brown AM
    EMBO J; 1995 Nov; 14(22):5532-41. PubMed ID: 8521810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for sequential ion-binding loci along the inner pore of the IRK1 inward-rectifier K+ channel.
    Shin HG; Xu Y; Lu Z
    J Gen Physiol; 2005 Aug; 126(2):123-35. PubMed ID: 16043774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bundle crossing region is responsible for the inwardly rectifying internal spermine block of the Kir2.1 channel.
    Huang CW; Kuo CC
    Pflugers Arch; 2014 Feb; 466(2):275-93. PubMed ID: 23873351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-affinity spermine block mediating outward currents through Kir2.1 and Kir2.2 inward rectifier potassium channels.
    Ishihara K; Yan DH
    J Physiol; 2007 Sep; 583(Pt 3):891-908. PubMed ID: 17640933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two modes of polyamine block regulating the cardiac inward rectifier K+ current IK1 as revealed by a study of the Kir2.1 channel expressed in a human cell line.
    Ishihara K; Ehara T
    J Physiol; 2004 Apr; 556(Pt 1):61-78. PubMed ID: 14724206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers.
    Sabirov RZ; Tominaga T; Miwa A; Okada Y; Oiki S
    J Gen Physiol; 1997 Dec; 110(6):665-77. PubMed ID: 9382895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inward rectification of the IRK1 channel expressed in Xenopus oocytes: effects of intracellular pH reveal an intrinsic gating mechanism.
    Shieh RC; John SA; Lee JK; Weiss JN
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):363-76. PubMed ID: 8841997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.