These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 11251047)

  • 41. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two aspects of the inward rectification mechanism. Effects of cytoplasmic blockers and extracellular K+ on the inward rectifier K+ channel.
    Kubo Y
    Jpn Heart J; 1996 Sep; 37(5):631-41. PubMed ID: 8973376
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gating of the kir2.1 channel at the bundle crossing region by intracellular spermine and other cations.
    Huang CW; Kuo CC
    J Cell Physiol; 2014 Nov; 229(11):1703-21. PubMed ID: 24633623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutations in the pore region of ROMK enhance Ba2+ block.
    Zhou H; Chepilko S; Schütt W; Choe H; Palmer LG; Sackin H
    Am J Physiol; 1996 Dec; 271(6 Pt 1):C1949-56. PubMed ID: 8997197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spermine block of the strong inward rectifier potassium channel Kir2.1: dual roles of surface charge screening and pore block.
    Xie LH; John SA; Weiss JN
    J Gen Physiol; 2002 Jul; 120(1):53-66. PubMed ID: 12084775
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spermine and spermidine as gating molecules for inward rectifier K+ channels.
    Ficker E; Taglialatela M; Wible BA; Henley CM; Brown AM
    Science; 1994 Nov; 266(5187):1068-72. PubMed ID: 7973666
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A structural determinant of differential sensitivity of cloned inward rectifier K+ channels to intracellular spermine.
    Fakler B; Brändle U; Bond C; Glowatzki E; König C; Adelman JP; Zenner HP; Ruppersberg JP
    FEBS Lett; 1994 Dec; 356(2-3):199-203. PubMed ID: 7805837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of the cytoplasmic pore in inward rectification of Kir2.1 channels.
    Kurata HT; Cheng WW; Arrabit C; Slesinger PA; Nichols CG
    J Gen Physiol; 2007 Aug; 130(2):145-55. PubMed ID: 17635958
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential polyamine sensitivity in inwardly rectifying Kir2 potassium channels.
    Panama BK; Lopatin AN
    J Physiol; 2006 Mar; 571(Pt 2):287-302. PubMed ID: 16373386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels.
    Taglialatela M; Wible BA; Caporaso R; Brown AM
    Science; 1994 May; 264(5160):844-7. PubMed ID: 8171340
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Voltage-dependent gating and block by internal spermine of the murine inwardly rectifying K+ channel, Kir2.1.
    Matsuda H; Oishi K; Omori K
    J Physiol; 2003 Apr; 548(Pt 2):361-71. PubMed ID: 12640008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subunit-specific inhibition of inward-rectifier K+ channels by quinidine.
    Doi T; Fakler B; Schultz JH; Ehmke H; Brändle U; Zenner HP; Süssbrich H; Lang F; Ruppersberg JP; Busch AE
    FEBS Lett; 1995 Nov; 375(3):193-6. PubMed ID: 7498497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes.
    Liu GX; Derst C; Schlichthörl G; Heinen S; Seebohm G; Brüggemann A; Kummer W; Veh RW; Daut J; Preisig-Müller R
    J Physiol; 2001 Apr; 532(Pt 1):115-26. PubMed ID: 11283229
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel.
    Lu Z; MacKinnon R
    Nature; 1994 Sep; 371(6494):243-6. PubMed ID: 7915826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Revisiting inward rectification: K ions permeate through Kir2.1 channels during high-affinity block by spermidine.
    Liu TA; Chang HK; Shieh RC
    J Gen Physiol; 2012 Mar; 139(3):245-59. PubMed ID: 22371365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K(+)-selective permeation.
    Reuveny E; Jan YN; Jan LY
    Biophys J; 1996 Feb; 70(2):754-61. PubMed ID: 8789092
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel.
    Yang J; Jan YN; Jan LY
    Neuron; 1995 Dec; 15(6):1441-7. PubMed ID: 8845166
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels.
    Xie LH; John SA; Ribalet B; Weiss JN
    J Gen Physiol; 2005 Dec; 126(6):541-9. PubMed ID: 16316973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ammonium ions induce inactivation of Kir2.1 potassium channels expressed in Xenopus oocytes.
    Shieh RC; Lee YL
    J Physiol; 2001 Sep; 535(Pt 2):359-70. PubMed ID: 11533129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.