BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

905 related articles for article (PubMed ID: 11251060)

  • 1. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics.
    Rozov A; Burnashev N; Sakmann B; Neher E
    J Physiol; 2001 Mar; 531(Pt 3):807-26. PubMed ID: 11251060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers.
    Ohana O; Sakmann B
    J Physiol; 1998 Nov; 513 ( Pt 1)(Pt 1):135-48. PubMed ID: 9782165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Ca2+ channels mediate transmitter release at excitatory synapses displaying different dynamic properties in rat neocortex.
    Ali AB; Nelson C
    Cereb Cortex; 2006 Mar; 16(3):386-93. PubMed ID: 15917483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release-independent depression at pyramidal inputs onto specific cell targets: dual recordings in slices of rat cortex.
    Thomson AM; Bannister AP
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):57-70. PubMed ID: 10432339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic GABA release depresses excitatory transmission between layer 2/3 pyramidal and bitufted neurons in rat neocortex.
    Zilberter Y; Kaiser KM; Sakmann B
    Neuron; 1999 Dec; 24(4):979-88. PubMed ID: 10624960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postsynaptic calcium influx at single synaptic contacts between pyramidal neurons and bitufted interneurons in layer 2/3 of rat neocortex is enhanced by backpropagating action potentials.
    Kaiser KM; Lübke J; Zilberter Y; Sakmann B
    J Neurosci; 2004 Feb; 24(6):1319-29. PubMed ID: 14960603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex.
    Koester HJ; Sakmann B
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):625-46. PubMed ID: 11118494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro.
    Thomson AM
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):131-47. PubMed ID: 9234202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target cell-dependent normalization of transmitter release at neocortical synapses.
    Koester HJ; Johnston D
    Science; 2005 May; 308(5723):863-6. PubMed ID: 15774725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-specific regulation of synaptic amplitudes in the neocortex.
    Watanabe J; Rozov A; Wollmuth LP
    J Neurosci; 2005 Jan; 25(4):1024-33. PubMed ID: 15673684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals.
    Urbano FJ; Depetris RS; Uchitel OD
    Pflugers Arch; 2001 Mar; 441(6):824-31. PubMed ID: 11316267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Ca2+-dependence of transmitter release mediated by P/Q- and N-type calcium channels at neonatal rat neuromuscular junctions.
    Rosato-Siri MD; Piriz J; Tropper BA; Uchitel OD
    Eur J Neurosci; 2002 Jun; 15(12):1874-80. PubMed ID: 12099893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically.
    Thomson AM; Deuchars J; West DC
    J Neurophysiol; 1993 Dec; 70(6):2354-69. PubMed ID: 8120587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of pre- and postsynaptic NMDA receptors at local circuit interneuron connections in rat neocortex.
    De-May CL; Ali AB
    Neuroscience; 2013 Jan; 228():179-89. PubMed ID: 23079623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.
    Markram H; Lübke J; Frotscher M; Roth A; Sakmann B
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):409-40. PubMed ID: 9147328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat.
    Enríquez-Denton M; Nielsen J; Perreault MC; Morita H; Petersen N; Hultborn H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):623-37. PubMed ID: 10922013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target-cell-specific facilitation and depression in neocortical circuits.
    Reyes A; Lujan R; Rozov A; Burnashev N; Somogyi P; Sakmann B
    Nat Neurosci; 1998 Aug; 1(4):279-85. PubMed ID: 10195160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying short-term modulation of transmitter release by presynaptic depolarization.
    Hori T; Takahashi T
    J Physiol; 2009 Jun; 587(Pt 12):2987-3000. PubMed ID: 19403620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex.
    Zilberter Y
    J Physiol; 2000 Nov; 528(Pt 3):489-96. PubMed ID: 11060126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats.
    Sun HY; Lyons SA; Dobrunz LE
    J Physiol; 2005 Nov; 568(Pt 3):815-40. PubMed ID: 16109728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.