BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 11251203)

  • 1. Medial versus lateral parabrachial nucleus lesions in the rat: effects on cholecystokinin- and D-fenfluramine-induced anorexia.
    Trifunovic R; Reilly S
    Brain Res; 2001 Mar; 894(2):288-96. PubMed ID: 11251203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medial parabrachial nucleus neurons modulate d-fenfluramine-induced anorexia through 5HT2C receptors.
    Trifunovic R; Reilly S
    Brain Res; 2006 Jan; 1067(1):170-6. PubMed ID: 16343451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholecystokinin- and dexfenfluramine-induced anorexia compared using devazepide and c-fos expression in the rat brain.
    Li BH; Rowland NE
    Regul Pept; 1994 Mar; 50(3):223-33. PubMed ID: 8016407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitotoxic lesions of the lateral parabrachial nucleus do not prevent cholecystokinin-induced suppression of milk intake in rats.
    Trifunovic R; Reilly S
    Neurosci Lett; 2003 Sep; 348(2):109-12. PubMed ID: 12902030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversal of dexfenfluramine-induced anorexia and c-Fos/c-Jun expression by lesion in the lateral parabrachial nucleus.
    Li BH; Spector AC; Rowland NE
    Brain Res; 1994 Mar; 640(1-2):255-67. PubMed ID: 8004454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of vagotomy on cholecystokinin- and dexfenfluramine-induced Fos-like immunoreactivity in the rat brain.
    Li BH; Rowland NE
    Brain Res Bull; 1995; 37(6):589-93. PubMed ID: 7670882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tolerance to the anorectic effect of dexfenfluramine in rats: role of serotonin, cholecystokinin, and neuropeptide Y.
    Rowland NE
    Physiol Behav; 1994 Feb; 55(2):201-7. PubMed ID: 8153156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medial versus lateral parabrachial nucleus lesions in the rat: effects on mercaptoacetate-induced feeding and conditioned taste aversion.
    Trifunovic R; Reilly S
    Brain Res Bull; 2002 May; 58(1):107-13. PubMed ID: 12121820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of the anorectic effect of (+)-fenfluramine in the rat by the selective cholecystokinin receptor antagonist MK-329.
    Cooper SJ; Dourish CT; Barber DJ
    Br J Pharmacol; 1990 Jan; 99(1):65-70. PubMed ID: 2331576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross tolerance between anorectic action and induction of Fos-ir with dexfenfluramine and 5HT1B/2C agonists in rats.
    Rowland NE; Robertson K; Lo J; Rema E
    Psychopharmacology (Berl); 2001 Jun; 156(1):108-14. PubMed ID: 11465628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hindbrain noradrenergic lesions attenuate anorexia and alter central cFos expression in rats after gastric viscerosensory stimulation.
    Rinaman L
    J Neurosci; 2003 Nov; 23(31):10084-92. PubMed ID: 14602823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia.
    Swick JC; Alhadeff AL; Grill HJ; Urrea P; Lee SM; Roh H; Baird JP
    Neuropsychopharmacology; 2015 Jul; 40(8):2001-14. PubMed ID: 25703200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of fenfluramine and fluoxetine anorexia by 8-OH-DPAT is attenuated following raphe injection of 5,7-dihydroxytryptamine.
    Currie PJ; Coscina DV; Fletcher PJ
    Brain Res; 1998 Jul; 800(1):62-8. PubMed ID: 9685586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-methyl-D-aspartate lesions of the lateral hypothalamus do not reduce amphetamine or fenfluramine anorexia but enhance the acquisition of eating in response to tail pinch in the rat.
    Clark JM; Clark AJ; Winn P
    Psychopharmacology (Berl); 1992; 109(3):331-7. PubMed ID: 1365634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lesion of the lateral parabrachial nucleus attenuates the anorectic effect of peripheral amylin and CCK.
    Becskei C; Grabler V; Edwards GL; Riediger T; Lutz TA
    Brain Res; 2007 Aug; 1162():76-84. PubMed ID: 17617389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reciprocal interaction of 5-hydroxytryptamine and cholecystokinin in the control of feeding patterns in rats.
    Grignaschi G; Mantelli B; Fracasso C; Anelli M; Caccia S; Samanin R
    Br J Pharmacol; 1993 Jun; 109(2):491-4. PubMed ID: 8358548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholecystokinin-induced anorexia depends on serotoninergic function.
    Stallone D; Nicolaïdis S; Gibbs J
    Am J Physiol; 1989 May; 256(5 Pt 2):R1138-41. PubMed ID: 2719155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholecystokinin and D-fenfluramine inhibit food intake in oxytocin-deficient mice.
    Mantella RC; Rinaman L; Vollmer RR; Amico JA
    Am J Physiol Regul Integr Comp Physiol; 2003 Nov; 285(5):R1037-45. PubMed ID: 14557235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEGylated cholecystokinin prolongs satiation in rats: dose dependency and receptor involvement.
    Verbaeys I; León-Tamariz F; Buyse J; De Cuyper M; Pottel H; Van Boven M; Cokelaere M
    Br J Pharmacol; 2007 Oct; 152(3):396-403. PubMed ID: 17618299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of anorectic and aversive agents on deprivation-induced feeding and taste aversion conditioning in rats.
    Ervin GN; Birkemo LS; Johnson MF; Conger LK; Mosher JT; Menius JA
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1203-10. PubMed ID: 7791092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.