BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 11251294)

  • 1. Role of type II thioesterases: evidence for removal of short acyl chains produced by aberrant decarboxylation of chain extender units.
    Heathcote ML; Staunton J; Leadlay PF
    Chem Biol; 2001 Feb; 8(2):207-20. PubMed ID: 11251294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the enzymatic domains in the modular portion of the coronafacic acid polyketide synthase.
    Jiralerspong S; Rangaswamy V; Bender CL; Parry RJ
    Gene; 2001 May; 270(1-2):191-200. PubMed ID: 11404016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin.
    Kim BS; Cropp TA; Beck BJ; Sherman DH; Reynolds KA
    J Biol Chem; 2002 Dec; 277(50):48028-34. PubMed ID: 12368286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type II thioesterase from Streptomyces coelicolor A3(2).
    Kotowska M; Pawlik K; Butler AR; Cundliffe E; Takano E; Kuczek K
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1777-1783. PubMed ID: 12055297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acyltransferase homologue from the initiation module of the R1128 polyketide synthase is an acyl-ACP thioesterase that edits acetyl primer units.
    Tang Y; Koppisch AT; Khosla C
    Biochemistry; 2004 Jul; 43(29):9546-55. PubMed ID: 15260498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of Overactivated Acyls by a Type II Thioesterase during Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882.
    Wu H; Liang J; Gou L; Wu Q; Liang WJ; Zhou X; Bruce IJ; Deng Z; Wang Z
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of type II thioesterases involved in natamycin biosynthesis in Streptomyces chattanoogensis L10.
    Wang YY; Ran XX; Chen WB; Liu SP; Zhang XS; Guo YY; Jiang XH; Jiang H; Li YQ
    FEBS Lett; 2014 Aug; 588(17):3259-64. PubMed ID: 25064840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase.
    Gokhale RS; Hunziker D; Cane DE; Khosla C
    Chem Biol; 1999 Feb; 6(2):117-25. PubMed ID: 10021418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic self-acylation of type II polyketide synthase acyl carrier proteins.
    Hitchman TS; Crosby J; Byrom KJ; Cox RJ; Simpson TJ
    Chem Biol; 1998 Jan; 5(1):35-47. PubMed ID: 9479478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and functional analysis of RifR, the type II thioesterase from the rifamycin biosynthetic pathway.
    Claxton HB; Akey DL; Silver MK; Admiraal SJ; Smith JL
    J Biol Chem; 2009 Feb; 284(8):5021-9. PubMed ID: 19103602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type II thioesterase ScoT, associated with Streptomyces coelicolor A3(2) modular polyketide synthase Cpk, hydrolyzes acyl residues and has a preference for propionate.
    Kotowska M; Pawlik K; Smulczyk-Krawczyszyn A; Bartosz-Bechowski H; Kuczek K
    Appl Environ Microbiol; 2009 Feb; 75(4):887-96. PubMed ID: 19074611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of molecular recognition in the pikromycin polyketide synthase.
    Chen S; Xue Y; Sherman DH; Reynolds KA
    Chem Biol; 2000 Dec; 7(12):907-18. PubMed ID: 11137814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymes involved in fatty acid and polyketide biosynthesis in Streptomyces glaucescens: role of FabH and FabD and their acyl carrier protein specificity.
    Florova G; Kazanina G; Reynolds KA
    Biochemistry; 2002 Aug; 41(33):10462-71. PubMed ID: 12173933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of Ser101, Asp236, and His237 in catalysis of thioesterase II and of the C-terminal region of the enzyme in its interaction with fatty acid synthase.
    Tai MH; Chirala SS; Wakil SJ
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1852-6. PubMed ID: 8446599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type II thioesterase ScoT is required for coelimycin production by the modular polyketide synthase Cpk of Streptomyces coelicolor A3(2).
    Kotowska M; Ciekot J; Pawlik K
    Acta Biochim Pol; 2014; 61(1):141-7. PubMed ID: 24660171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a characterization of the structural determinants of specificity in the macrocyclizing thioesterase for deoxyerythronolide B biosynthesis.
    Argyropoulos P; Bergeret F; Pardin C; Reimer JM; Pinto A; Boddy CN; Schmeing TM
    Biochim Biophys Acta; 2016 Mar; 1860(3):486-97. PubMed ID: 26592346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent linkage mediates communication between ACP and TE domains in modular polyketide synthases.
    Tran L; Tosin M; Spencer JB; Leadlay PF; Weissman KJ
    Chembiochem; 2008 Apr; 9(6):905-15. PubMed ID: 18348128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terminal alkene formation by the thioesterase of curacin A biosynthesis: structure of a decarboxylating thioesterase.
    Gehret JJ; Gu L; Gerwick WH; Wipf P; Sherman DH; Smith JL
    J Biol Chem; 2011 Apr; 286(16):14445-54. PubMed ID: 21357626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of type II thioesterases and their application for secondary metabolite yield improvement.
    Kotowska M; Pawlik K
    Appl Microbiol Biotechnol; 2014 Sep; 98(18):7735-46. PubMed ID: 25081554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. YbtT is a low-specificity type II thioesterase that maintains production of the metallophore yersiniabactin in pathogenic enterobacteria.
    Ohlemacher SI; Xu Y; Kober DL; Malik M; Nix JC; Brett TJ; Henderson JP
    J Biol Chem; 2018 Dec; 293(51):19572-19585. PubMed ID: 30355735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.