BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11252077)

  • 1. Biomechanical comparison of two racing wheelchair propulsion techniques.
    Chow JW; Millikan TA; Carlton LG; Morse MI; Chae WS
    Med Sci Sports Exerc; 2001 Mar; 33(3):476-84. PubMed ID: 11252077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of resistance load on biomechanical characteristics of racing wheelchair propulsion over a roller system.
    Chow JW; Millikan TA; Carlton LG; Chae W; Morse MI
    J Biomech; 2000 May; 33(5):601-8. PubMed ID: 10708781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of trunk kinematics and EMG activity of wheelchair racing T54 athletes on wheelchair propulsion speeds.
    Guo W; Liu Q; Huang P; Wang D; Shi L; Han D
    PeerJ; 2023; 11():e15792. PubMed ID: 37581118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic and electromyographic analysis of wheelchair propulsion on ramps of different slopes for young men with paraplegia.
    Chow JW; Millikan TA; Carlton LG; Chae WS; Lim YT; Morse MI
    Arch Phys Med Rehabil; 2009 Feb; 90(2):271-8. PubMed ID: 19236980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical analysis of wheelchair propulsion for various seating positions.
    Mâsse LC; Lamontagne M; O'Riain MD
    J Rehabil Res Dev; 1992; 29(3):12-28. PubMed ID: 1640378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of axle position and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion.
    Bertolaccini GDS; Carvalho Filho IFP; Christofoletti G; Paschoarelli LC; Medola FO
    Int J Occup Saf Ergon; 2018 Jun; 24(2):311-315. PubMed ID: 28278008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle activation during the tennis volley.
    Chow JW; Carlton LG; Lim YT; Shim JH; Chae WS; Kuenster AF
    Med Sci Sports Exerc; 1999 Jun; 31(6):846-54. PubMed ID: 10378912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of muscle activity during hand rim and lever wheelchair propulsion over flat terrain.
    Błażkiewicz M; Wiszomirska I; Fiok K; Mróz A; Kosmol A; Mikicin M; Molik B; Marszałek J
    Acta Bioeng Biomech; 2019; 21(3):67-74. PubMed ID: 31798014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons.
    Mulroy SJ; Gronley JK; Newsam CJ; Perry J
    Arch Phys Med Rehabil; 1996 Feb; 77(2):187-93. PubMed ID: 8607745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of shoulder muscle coordination vary between wheelchair propulsion techniques.
    Qi L; Wakeling J; Grange S; Ferguson-Pell M
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):559-66. PubMed ID: 23797282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH; Bakker WH; Elkhuizen JW; Veeger HE; Gwinn T
    Am J Phys Med Rehabil; 1998; 77(3):222-34. PubMed ID: 9635557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination patterns of shoulder muscles during level-ground and incline wheelchair propulsion.
    Qi L; Wakeling J; Grange S; Ferguson-Pell M
    J Rehabil Res Dev; 2013; 50(5):651-62. PubMed ID: 24013913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs.
    Briley SJ; Vegter RJK; Tolfrey VL; Mason BS
    J Biomech; 2020 May; 104():109725. PubMed ID: 32173030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion.
    Boninger ML; Souza AL; Cooper RA; Fitzgerald SG; Koontz AM; Fay BT
    Arch Phys Med Rehabil; 2002 May; 83(5):718-23. PubMed ID: 11994814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia.
    Lighthall-Haubert L; Requejo PS; Mulroy SJ; Newsam CJ; Bontrager E; Gronley JK; Perry J
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheelchair pushing and turning: lumbar spine and shoulder loads and recommended limits.
    Weston EB; Khan SN; Marras WS
    Ergonomics; 2017 Dec; 60(12):1754-1765. PubMed ID: 28627334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface electromyography activity of trunk muscles during wheelchair propulsion.
    Yang YS; Koontz AM; Triolo RJ; Mercer JL; Boninger ML
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1032-41. PubMed ID: 16979271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
    Rankin JW; Richter WM; Neptune RR
    J Biomech; 2011 Apr; 44(7):1246-52. PubMed ID: 21397232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.