These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 1125222)
21. Partial purification and characterization of two soluble c-type cytochromes from Chromatium vinosum. Gray GO; Gaul DF; Knaff DB Arch Biochem Biophys; 1983 Apr; 222(1):78-86. PubMed ID: 6301383 [TBL] [Abstract][Full Text] [Related]
22. The detection and characterization by electron-paramagnetic-resonance spectroscopy of iron-sulphur proteins and other electron-transport components in chromatophores from the purple bacterium Chromatium. Evans MC; Lord AV; Reeves SG Biochem J; 1974 Feb; 138(2):177-83. PubMed ID: 4362737 [TBL] [Abstract][Full Text] [Related]
23. Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum. Halsey YD; Parson WW Biochim Biophys Acta; 1974 Jun; 347(3):404-16. PubMed ID: 4366890 [No Abstract] [Full Text] [Related]
24. Multiple light-induced reactions of cytochromes b and c in Rhodopseudomonas spheroides. Jones OT Biochem J; 1969 Oct; 114(4):793-9. PubMed ID: 4310060 [TBL] [Abstract][Full Text] [Related]
25. Photoreduction of the long wavelength bacteriopheophytin in reaction centers and chromatophores of the photosynthetic bacterium Chromatium vinosum. van Grondelle R; Romijn JC; Holmes NG FEBS Lett; 1976 Dec; 72(1):187-92. PubMed ID: 1001464 [No Abstract] [Full Text] [Related]
26. Diffusion-potential-induced oxidation and reduction of cytochromes in chromatophores from Rhodopseudomonas sphaeroides. Matsuura K; Nishimura M J Biochem; 1978 Sep; 84(3):539-46. PubMed ID: 214426 [TBL] [Abstract][Full Text] [Related]
27. Coupled photooxidation of bacteriochlorophyll P890 and photoreduction of ubiquinone in a photochemically active subchromatophore particle derived from Chromatium. Ke B; Vernon LP; Garcia A; Ngo E Biochemistry; 1968 Jan; 7(1):311-8. PubMed ID: 5758548 [No Abstract] [Full Text] [Related]
28. A comparison of electron transport and photophosphorylation systems of Rhodopseudomonas capsulata and Rhodospirillum rubrum. Effects of antimycin A and dibromothymoquinone. Gromet-Elhanan Z; Gest H Arch Microbiol; 1978 Jan; 116(1):29-34. PubMed ID: 414685 [TBL] [Abstract][Full Text] [Related]
29. Cytochromes and anaerobic sulfide oxidation in the purple sulfur bacterium Chromatium warmingii. Wermter U; Fischer U Z Naturforsch C Biosci; 1983; 38(11-12):960-7. PubMed ID: 6670358 [TBL] [Abstract][Full Text] [Related]
30. The effect of electron donors and acceptors on light-induced absorbance changes and photophosphorylation in Rhodospirillum rubrum chromatophores. Silberstein BR; Epel BL; Malkin S; Gromet-Elhanan Z Eur J Biochem; 1977 Oct; 80(1):135-41. PubMed ID: 411652 [TBL] [Abstract][Full Text] [Related]
31. Fast stages of photoelectric processes in biological membranes. III. Bacterial photosynthetic redox system. Drachev LA; Semenov AYu ; Skulachev VP; Smirnova IA; Chamorovsky SK; Kononenko AA; Rubin AB; Uspenskaya NYa Eur J Biochem; 1981 Jul; 117(3):483-9. PubMed ID: 6793358 [TBL] [Abstract][Full Text] [Related]
32. Observations on light-induced oxidation reactions in the electron transport system of Chromatium. Kennel SJ; Bartsch RG; Kamen MD Biophys J; 1972 Jul; 12(7):882-96. PubMed ID: 5037342 [TBL] [Abstract][Full Text] [Related]
33. The stimulation of photophosphorylation and ATPase by artificial redox mediators in chromatophores of Rhodopseudomonas capsulata at different redox potentials. Baccarini-Melandri A; Melandri BA; Hauska G J Bioenerg Biomembr; 1979 Apr; 11(1-2):1-16. PubMed ID: 162342 [TBL] [Abstract][Full Text] [Related]
34. Some effects of o-phenanthroline on electron transport in chromatophores from photosynthetic bacteria. Jackson JB; Cogdell RJ; Crofts AR Biochim Biophys Acta; 1973 Jan; 292(1):218-25. PubMed ID: 4705131 [No Abstract] [Full Text] [Related]
35. Fast membrane H+ binding in the light-activated state of Chromatium chromatophores. Chance B; Crofts AR; Nishimura M; Price B Eur J Biochem; 1970 Apr; 13(2):364-74. PubMed ID: 5439938 [No Abstract] [Full Text] [Related]
36. Electron spin resonance characterization of Chromatium D hemes, non-heme irons and the components involved in primary photochemistry. Dutton PL; Leigh JS Biochim Biophys Acta; 1973 Aug; 314(2):178-90. PubMed ID: 4355789 [No Abstract] [Full Text] [Related]
37. Dichroism of bacteriochlorophyll in chromatophores of photosynthetic bacteria. Morita S; Miyazaki T J Biochem; 1978 Jun; 83(6):1715-20. PubMed ID: 97281 [TBL] [Abstract][Full Text] [Related]
38. Regulation of electron transfer by sidedness-dependent surface pH. Dependence of the rate of cytochrome c-555 reduction on H+ concentration in the surface region on the periplasmic side of photosynthetic membranes in whole cells, spheroplasts and chromatophores of Chromatium vinosum. Hashimoto K; Nishimura M J Biochem; 1981 Mar; 89(3):909-18. PubMed ID: 6270069 [No Abstract] [Full Text] [Related]
39. A large photoreactive particle from Chromatium vinosum chromatophores. Halsey YD; Gyers B Biochim Biophys Acta; 1975 May; 387(2):349-67. PubMed ID: 1125294 [TBL] [Abstract][Full Text] [Related]
40. PHOTOREDUCTION OF UBIQUINONE AND PHOTOOXIDIATION OF PHENAZINE METHOSULFATE BY CHROMATOPHORES OF PHOTOSYNTHETIC BACTERIA AND BACTERIOCHLOROPHYLL. ZAUGG WS; VERNON LP; TIRPACK A Proc Natl Acad Sci U S A; 1964 Feb; 51(2):232-8. PubMed ID: 14128127 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]