These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1125248)

  • 1. Effects of Tris and histidine on human erythrocytes and conditions influencing their mode of action.
    Luthra MG; Ekholm JE; Kim HD; Hanahan DJ
    Biochim Biophys Acta; 1975 Apr; 382(4):634-49. PubMed ID: 1125248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of Tris buffer and effects on K+ loss in human red blood cells and reconstituted ghosts.
    Bodemann HH; Karsch B
    Biochim Biophys Acta; 1984 Apr; 772(1):77-83. PubMed ID: 6712951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitory postnatal hemolysis of calf red cells by amino acids.
    Kim HD
    J Membr Biol; 1976 Feb; 26(1):71-90. PubMed ID: 3653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation by lithium ions of the inside sodium sites in (Na+ + K+)-ATPase.
    Beaugé L
    Biochim Biophys Acta; 1978 Dec; 527(2):472-84. PubMed ID: 215214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride.
    Maizels M
    J Physiol; 1968 Apr; 195(3):657-79. PubMed ID: 5649640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influx of calcium ions into human erythrocytes during cold storage.
    Long C; Mouat B
    Biochem J; 1973 Mar; 132(3):559-70. PubMed ID: 4724590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of potassium by human red cells.
    PONDER E
    J Gen Physiol; 1950 Jul; 33(6):745-57. PubMed ID: 15428615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume-dependent regulation of ion carriers in human and rat erythrocytes: role of cytoskeleton and protein phosphorylation.
    Orlov SN; Kuznetsov SR; Kolosova IA; Aksentsev SL; Konev SV
    Ross Fiziol Zh Im I M Sechenova; 1997; 83(5-6):119-47. PubMed ID: 13677670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The modifications of the final stages of the complement reaction by alkali metal cations.
    Dalmasso AP; Lelchuk R; Giavedoni EB; De Isola ED
    J Immunol; 1975 Jul; 115(1):63-8. PubMed ID: 239058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes.
    Kumar A; Ali M; Pandey BN; Hassan PA; Mishra KP
    Biochimie; 2010 Jul; 92(7):869-79. PubMed ID: 20362640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of charged amphiphiles in depolarising solutions on potassium efflux and the osmotic fragility of human erythrocytes.
    Wróbel A
    Bioelectrochemistry; 2008 Aug; 73(2):117-22. PubMed ID: 18486568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation specificity of propranolol-induced changes in RBC membrane permeability: comparative effects in human, dog and cat erythrocytes.
    Müller-Soyano A; Glader BE
    J Cell Physiol; 1977 May; 91(2):317-21. PubMed ID: 558987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes.
    Brugnara C; de Franceschi L
    J Cell Physiol; 1993 Feb; 154(2):271-80. PubMed ID: 8381125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance to osmotic lysis in BXD-31 mouse erythrocytes: association with upregulated K-Cl cotransport.
    Armsby CC; Stuart-Tilley AK; Alper SL; Brugnara C
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C866-77. PubMed ID: 8638668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of dilauroylglycerophosphocholine with erythrocytes: pre-hemolytic events and hemolysis.
    Tanaka Y; Inoue K; Nojima S
    Biochim Biophys Acta; 1980 Jul; 600(1):126-39. PubMed ID: 7397164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of lanthanum to estimate the numbers of extracellular cation-exchanging sites in the guinea-pig's taenia coli, and its effects on transmembrane monovalent ion movements.
    Brading AF; Widdicombe JH
    J Physiol; 1977 Apr; 266(2):255-73. PubMed ID: 857002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fluoride and vanadate on K+ transport across the erythrocyte membrane of Rana temporaria.
    Agalakova NI; Lapin AV; Gusev GP
    Membr Cell Biol; 2000; 13(4):527-36. PubMed ID: 10926370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of the plasma membrane leads to an influx of Na+ and Cl- but not an efflux of K+ in mouse hepatocytes and erythrocytes.
    Cameron IL; Hunter KE; Smith NK
    Physiol Chem Phys Med NMR; 1986; 18(2):133-6. PubMed ID: 3809261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chlordecone and chlordecone alcohol on isolated ovine erythrocytes.
    Soileau SD; Moreland DE
    J Toxicol Environ Health; 1988; 24(2):237-49. PubMed ID: 2455063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.