These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1125248)

  • 21. Histidine inhibits the degradation of cells suspended in Ringer's lactate.
    Simpkins CO; Ekshyyan V; Snyder B
    J Trauma; 2007 Sep; 63(3):565-72. PubMed ID: 18073602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exposure to malondialdehyde induces an early redox unbalance preceding membrane toxicity in human erythrocytes.
    Tesoriere L; D'Arpa D; Butera D; Pintaudi AM; Allegra M; Livrea MA
    Free Radic Res; 2002 Jan; 36(1):89-97. PubMed ID: 11999707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between temperature and tonicity on cation transport in dog red cells.
    Elford BC
    J Physiol; 1975 Mar; 246(2):371-95. PubMed ID: 806680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perturbation of red cell volume. Determination of membrane transport parameters for rapid penetrants.
    Farmer RE; Macey RI
    Biochim Biophys Acta; 1972 Dec; 290(1):290-9. PubMed ID: 4640766
    [No Abstract]   [Full Text] [Related]  

  • 25. Volume regulation in red blood cells of the frog Rana temporaria after osmotic shrinkage and swelling.
    Gusev GP; Lapin AV; Agulakova NI
    Membr Cell Biol; 1997; 11(3):305-17. PubMed ID: 9460050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular potassium. A determinant of the sodium-potassium pump rate.
    Knight AB; Welt LG
    J Gen Physiol; 1974 Mar; 63(3):351-73. PubMed ID: 4817354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active sodium and potassium transport in high potassium and low potassium sheep red cells.
    Hoffman PG; Tosteson DC
    J Gen Physiol; 1971 Oct; 58(4):438-66. PubMed ID: 5112660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human and dog erythrocytes: relationship between cellular ATP levels, ATP consumption and potassium concentrations.
    Miseta A; Somoskeoy S; Galambos C; Kellermayer M; Wheatley DN; Cameron IL
    Physiol Chem Phys Med NMR; 1992; 24(1):11-20. PubMed ID: 1317586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Na+-like effect of imidazole on the phosphorylation of (Na+ + K+)-ATPase.
    Schuurmans Stekhoven FM; Swarts HG; de Pont JJ; Bonting SL
    Biochim Biophys Acta; 1985 Apr; 815(1):16-24. PubMed ID: 2985116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium movement in high sodium feline red cells.
    Sha'afi RI; Hajjar JJ
    J Gen Physiol; 1971 Jun; 57(6):684-96. PubMed ID: 5576766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump.
    Dissing S; Hoffman JF
    J Gen Physiol; 1990 Jul; 96(1):167-93. PubMed ID: 2212979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport of sodium and protons and hypotonic haemolysis in the valinomycin-treated erythrocytes of rats with spontaneous hypertension.
    Orlov SN; Pokudin NI; Postnov YV
    J Hypertens; 1988 May; 6(5):351-9. PubMed ID: 2838546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects and mechanisms of action of ionophorous antibiotics valinomycin and salinomycin-Na on Babesia gibsoni in vitro.
    Yamasaki M; Nakamura K; Tamura N; Hwang SJ; Yoshikawa M; Sasaki N; Ohta H; Yamato O; Maede Y; Takiguchi M
    J Parasitol; 2009 Dec; 95(6):1532-8. PubMed ID: 20929429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence of toxic events in arsine-induced hemolysis in vitro: implications for the mechanism of toxicity in human erythrocytes.
    Winski SL; Barber DS; Rael LT; Carter DE
    Fundam Appl Toxicol; 1997 Aug; 38(2):123-8. PubMed ID: 9299185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of the extracellular counter-ion on the sodium-dependent, ouabain-uninhibited sodium efflux from human erythrocytes.
    Dunn MJ; Grant R
    Biochim Biophys Acta; 1974 May; 352(1):117-21. PubMed ID: 4854899
    [No Abstract]   [Full Text] [Related]  

  • 36. Na(+)-K(+)-2Cl- cotransport, Na+/H+ exchange, and cell volume in ferret erythrocytes.
    Mairbäurl H; Herth C
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1603-11. PubMed ID: 8944644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sodium and potassium transport in trout (Salmo gairdneri) erythrocytes.
    Bourne PK; Cossins AR
    J Physiol; 1984 Feb; 347():361-75. PubMed ID: 6707960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the interaction between puerarin and the erythrocyte membrane in puerarin-induced hemolysis.
    Hou SZ; Su ZR; Chen SX; Ye MR; Huang S; Liu L; Zhou H; Lai XP
    Chem Biol Interact; 2011 Jul; 192(3):184-92. PubMed ID: 21453687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease.
    Brugnara C; Kopin AS; Bunn HF; Tosteson DC
    J Clin Invest; 1985 May; 75(5):1608-17. PubMed ID: 3998150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.