BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11252805)

  • 1. Isolation of a cDNA sequence of rabbit GDF5 (mature form) and pattern of its mRNA expression during periosteal chondrogenesis.
    Sanyal A; Sarkar G; Fitzsimmons JS; O'Driscoll SW
    Mol Biotechnol; 2000 Nov; 16(3):203-10. PubMed ID: 11252805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Articular cartilage regeneration using periosteum.
    O'Driscoll SW
    Clin Orthop Relat Res; 1999 Oct; (367 Suppl):S186-203. PubMed ID: 10546647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of CD-RAP mRNA during periosteal chondrogenesis.
    Sanyal A; Clemens V; Fitzsimmons JS; Reinholz GG; Sarkar G; Mukherjee N; O'Driscoll SW
    J Orthop Res; 2003 Mar; 21(2):296-304. PubMed ID: 12568962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal expression patterns of BMP receptors and collagen II (B) during periosteal chondrogenesis.
    Sanyal A; Oursler MJ; Clemens VR; Fukumoto T; Fitzsimmons JS; O'Driscoll SW
    J Orthop Res; 2002 Jan; 20(1):58-65. PubMed ID: 11853091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells.
    Feng G; Wan Y; Balian G; Laurencin CT; Li X
    Growth Factors; 2008 Jun; 26(3):132-42. PubMed ID: 18569021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial evidence for the involvement of bone morphogenetic protein-2 early during periosteal chondrogenesis.
    Sanyal A; Sarkar G; Saris DB; Fitzsimmons JS; Bolander ME; O'Driscoll SW
    J Orthop Res; 1999 Nov; 17(6):926-34. PubMed ID: 10632460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells.
    Park J; Gelse K; Frank S; von der Mark K; Aigner T; Schneider H
    J Gene Med; 2006 Jan; 8(1):112-25. PubMed ID: 16142704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clonal growth of human articular cartilage and the functional role of the periosteum in chondrogenesis.
    Brittberg M; Sjögren-Jansson E; Thornemo M; Faber B; Tarkowski A; Peterson L; Lindahl A
    Osteoarthritis Cartilage; 2005 Feb; 13(2):146-53. PubMed ID: 15694576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrogenesis in periosteal explants. An organ culture model for in vitro study.
    O'Driscoll SW; Recklies AD; Poole AR
    J Bone Joint Surg Am; 1994 Jul; 76(7):1042-51. PubMed ID: 8027112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage and bone regeneration using gene-enhanced tissue engineering.
    Mason JM; Breitbart AS; Barcia M; Porti D; Pergolizzi RG; Grande DA
    Clin Orthop Relat Res; 2000 Oct; (379 Suppl):S171-8. PubMed ID: 11039767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of periosteum in cartilage repair.
    O'Driscoll SW; Fitzsimmons JS
    Clin Orthop Relat Res; 2001 Oct; (391 Suppl):S190-207. PubMed ID: 11603704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of spontaneous and growth-factor-augmented chondrogenesis in periosteum-bone tissue transferred into a joint.
    Jung M; Gotterbarm T; Gruettgen A; Vilei SB; Breusch S; Richter W
    Histochem Cell Biol; 2005 Jun; 123(4-5):447-56. PubMed ID: 15928927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-bioprinting a genetically inspired cartilage scaffold with GDF5-conjugated BMSC-laden hydrogel and polymer for cartilage repair.
    Sun Y; You Y; Jiang W; Zhai Z; Dai K
    Theranostics; 2019; 9(23):6949-6961. PubMed ID: 31660079
    [No Abstract]   [Full Text] [Related]  

  • 14. Viability of periosteal tissue obtained postmortem.
    O'Driscoll SW; Meisami B; Miura Y; Fitzsimmons JS
    Cell Transplant; 1999; 8(6):611-6. PubMed ID: 10701490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brief exposure to high-dose transforming growth factor-beta1 enhances periosteal chondrogenesis in vitro: a preliminary report.
    Miura Y; Parvizi J; Fitzsimmons JS; O'Driscoll SW
    J Bone Joint Surg Am; 2002 May; 84(5):793-9. PubMed ID: 12004023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis.
    Hatakeyama Y; Tuan RS; Shum L
    J Cell Biochem; 2004 Apr; 91(6):1204-17. PubMed ID: 15048875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of two novel missense mutations in the GDF5 proregion that reduce protein activity and are associated with brachydactyly type C.
    Stange K; Thieme T; Hertel K; Kuhfahl S; Janecke AR; Piza-Katzer H; Penttinen M; Hietala M; Dathe K; Mundlos S; Schwarz E; Seemann P
    J Mol Biol; 2014 Sep; 426(19):3221-3231. PubMed ID: 25092592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of human bone morphogenic protein 7 in primary rabbit periosteal cells: potential utility in gene therapy for osteochondral repair.
    Mason JM; Grande DA; Barcia M; Grant R; Pergolizzi RG; Breitbart AS
    Gene Ther; 1998 Aug; 5(8):1098-104. PubMed ID: 10326033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Culturing periosteum in vitro: the influence of different sizes of explants.
    Miura Y; O'Driscoll SW
    Cell Transplant; 1998; 7(5):453-7. PubMed ID: 9786065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Gdf5 expression in joint remodelling, repair and osteoarthritis.
    Kania K; Colella F; Riemen AHK; Wang H; Howard KA; Aigner T; Dell'Accio F; Capellini TD; Roelofs AJ; De Bari C
    Sci Rep; 2020 Jan; 10(1):157. PubMed ID: 31932746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.