These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11253612)

  • 41. A Bottom-Up Whole-Body Physiologically Based Pharmacokinetic Model to Mechanistically Predict Tissue Distribution and the Rate of Subcutaneous Absorption of Therapeutic Proteins.
    Gill KL; Gardner I; Li L; Jamei M
    AAPS J; 2016 Jan; 18(1):156-70. PubMed ID: 26408308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modelling and PBPK simulation in drug discovery.
    Jones HM; Gardner IB; Watson KJ
    AAPS J; 2009 Mar; 11(1):155-66. PubMed ID: 19280352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of perfusion rate on the local disposition of cefixime in liver perfusion system based on two-compartment dispersion model.
    Yano Y; Yamaoka K; Yasui H; Nakagawa T
    Drug Metab Dispos; 1991; 19(6):1022-7. PubMed ID: 1687006
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Whole body physiologically based modelling of β-blockers in the rat: events in tissues and plasma following an i.v. bolus dose.
    Cheung SYA; Rodgers T; Aarons L; Gueorguieva I; Dickinson GL; Murby S; Brown C; Collins B; Rowland M
    Br J Pharmacol; 2018 Jan; 175(1):67-83. PubMed ID: 29053169
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physiologically based pharmacokinetic modeling of cyclotrimethylenetrinitramine in male rats.
    Krishnan K; Crouse LC; Bazar MA; Major MA; Reddy G
    J Appl Toxicol; 2009 Oct; 29(7):629-37. PubMed ID: 19629953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of pharmacokinetic profile of valsartan in humans based on in vitro uptake-transport data.
    Poirier A; Cascais AC; Funk C; Lavé T
    Chem Biodivers; 2009 Nov; 6(11):1975-87. PubMed ID: 19937834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduction of a Whole-Body Physiologically Based Pharmacokinetic Model to Stabilise the Bayesian Analysis of Clinical Data.
    Wendling T; Tsamandouras N; Dumitras S; Pigeolet E; Ogungbenro K; Aarons L
    AAPS J; 2016 Jan; 18(1):196-209. PubMed ID: 26538125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimation of the minimum permeability coefficient in rats for perfusion-limited tissue distribution in whole-body physiologically-based pharmacokinetics.
    Jeong YS; Yim CS; Ryu HM; Noh CK; Song YK; Chung SJ
    Eur J Pharm Biopharm; 2017 Jun; 115():1-17. PubMed ID: 28215648
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A physiologically based pharmacokinetic model for nicotine disposition in the Sprague-Dawley rat.
    Plowchalk DR; Andersen ME; deBethizy JD
    Toxicol Appl Pharmacol; 1992 Oct; 116(2):177-88. PubMed ID: 1412462
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the validity of the dispersion model of hepatic drug elimination when intravascular transit time densities are long-tailed.
    Weiss M; Stedtler C; Roberts MS
    Bull Math Biol; 1997 Sep; 59(5):911-29. PubMed ID: 9281905
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physiologically-based modeling and interspecies prediction of paclitaxel pharmacokinetics.
    Zang X; Kagan L
    J Pharmacokinet Pharmacodyn; 2018 Aug; 45(4):577-592. PubMed ID: 29671170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction of the possibility of the secondary peaks of iv bolus drug plasma concentration time curve by the model that directly takes into account the transit time through the organ.
    Berezhkovskiy LM
    J Pharm Sci; 2009 Nov; 98(11):4376-90. PubMed ID: 19340884
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of unbound volumes of drug distribution in pharmacokinetic calculations.
    Stepensky D
    Eur J Pharm Sci; 2011 Jan; 42(1-2):91-8. PubMed ID: 21050885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pharmacokinetics in organs and the intact body: model validation and reduction.
    Weiss M
    Eur J Pharm Sci; 1999 Jan; 7(2):119-27. PubMed ID: 9845792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A physiologically based pharmacokinetic model for fluoride uptake by bone.
    Rao HV; Beliles RP; Whitford GM; Turner CH
    Regul Toxicol Pharmacol; 1995 Aug; 22(1):30-42. PubMed ID: 7494900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Complete Extension of Classical Hepatic Clearance Models Using Fractional Distribution Parameter f
    Jeong YS; Jusko WJ
    J Pharm Sci; 2024 Jan; 113(1):95-117. PubMed ID: 37279835
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hepatic clearance concepts and misconceptions: Why the well-stirred model is still used even though it is not physiologic reality?
    Pang KS; Han YR; Noh K; Lee PI; Rowland M
    Biochem Pharmacol; 2019 Nov; 169():113596. PubMed ID: 31398312
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cellular pharmacokinetics: effects of cytoplasmic diffusion and binding on organ transit time distribution.
    Weiss M
    J Pharmacokinet Biopharm; 1999 Jun; 27(3):233-56. PubMed ID: 10728488
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physiologically based pharmacokinetics of cyclosporine A: reevaluation of dose-nonlinear kinetics in rats.
    Tanaka C; Kawai R; Rowland M
    J Pharmacokinet Biopharm; 1999 Dec; 27(6):597-623. PubMed ID: 11153448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.