These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11253812)

  • 1. ATP-sensitive K+ channels in cardiac muscle from cold-acclimated goldfish: characterization and altered response to ATP.
    Ganim RB; Peckol EL; Larkin J; Ruchhoeft ML; Cameron JS
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):395-401. PubMed ID: 11253812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A role for nitric oxide in hypoxia-induced activation of cardiac KATP channels in goldfish (Carassius auratus).
    Cameron JS; Hoffmann KE; Zia C; Hemmett HM; Kronsteiner A; Lee CM
    J Exp Biol; 2003 Nov; 206(Pt 22):4057-65. PubMed ID: 14555746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac K(ATP) channel alterations associated with acclimation to hypoxia in goldfish (Carassius auratus L.).
    Cameron JS; DeWitt JP; Ngo TT; Yajnik T; Chan S; Chung E; Kang E
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Apr; 164(4):554-64. PubMed ID: 23291308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered activities of branchial and renal Na/K- and Mg-ATPases in cold-acclimated goldfish (Carassius auratus).
    Paxton R; Umminger BL
    Comp Biochem Physiol B; 1983; 74(3):503-6. PubMed ID: 6132750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardioprotective effects of K ATP channel activation during hypoxia in goldfish Carassius auratus.
    Chen J; Zhu JX; Wilson I; Cameron JS
    J Exp Biol; 2005 Jul; 208(Pt 14):2765-72. PubMed ID: 16000545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of anoxic preconditioning on ATP-sensitive potassium channels in guinea-pig ventricular myocytes.
    Zhu Z; Li YL; Li DP; He RR
    Pflugers Arch; 2000 Apr; 439(6):808-13. PubMed ID: 10784356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of ATP-sensitive K+ channels by cromakalim. Effects on cellular K+ loss and cardiac function in ischemic and reperfused mammalian ventricle.
    Venkatesh N; Stuart JS; Lamp ST; Alexander LD; Weiss JN
    Circ Res; 1992 Dec; 71(6):1324-33. PubMed ID: 1423930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent expression of sarcolemmal K(+) currents in rainbow trout atrial and ventricular myocytes.
    Vornanen M; Ryökkynen A; Nurmi A
    Am J Physiol Regul Integr Comp Physiol; 2002 Apr; 282(4):R1191-9. PubMed ID: 11893625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoflurane decreases ATP sensitivity of guinea pig cardiac sarcolemmal KATP channel at reduced intracellular pH.
    Stadnicka A; Bosnjak ZJ
    Anesthesiology; 2003 Feb; 98(2):396-403. PubMed ID: 12552199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature on the activation of myocardial KATP channel in guinea pig ventricular myocytes: a pilot study by whole cell patch clamp recording.
    Jin SQ; Niu LJ; Deng CY; Yao ZB; Zhou YJ
    Chin Med J (Engl); 2006 Oct; 119(20):1721-6. PubMed ID: 17097020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel inwardly rectifying K+ channel, Kir2.5, is upregulated under chronic cold stress in fish cardiac myocytes.
    Hassinen M; Paajanen V; Vornanen M
    J Exp Biol; 2008 Jul; 211(Pt 13):2162-71. PubMed ID: 18552306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of ATP-sensitive K(+) channels by epoxyeicosatrienoic acids in rat cardiac ventricular myocytes.
    Lu T; Hoshi T; Weintraub NL; Spector AA; Lee HC
    J Physiol; 2001 Dec; 537(Pt 3):811-27. PubMed ID: 11744757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-sensitive K+ channel modification by metabolic inhibition in isolated guinea-pig ventricular myocytes.
    Deutsch N; Weiss JN
    J Physiol; 1993 Jun; 465():163-79. PubMed ID: 8229832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of thermal acclimation on action potentials and sarcolemmal K+ channels from Pacific bluefin tuna cardiomyocytes.
    Galli GL; Lipnick MS; Block BA
    Am J Physiol Regul Integr Comp Physiol; 2009 Aug; 297(2):R502-9. PubMed ID: 19515982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature and prolonged anoxia exposure on electrophysiological properties of the turtle (Trachemys scripta) heart.
    Stecyk JA; Paajanen V; Farrell AP; Vornanen M
    Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R421-37. PubMed ID: 17442785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulphonylurea drugs no longer inhibit ATP-sensitive K+ channels during metabolic stress in cardiac muscle.
    Findlay I
    J Pharmacol Exp Ther; 1993 Jul; 266(1):456-67. PubMed ID: 8331572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of muscarinic K+ channels by extracellular ATP and UTP in rat atrial myocytes.
    Wu SN; Liu SI; Hwang TL
    J Cardiovasc Pharmacol; 1998 Feb; 31(2):203-11. PubMed ID: 9475261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of adenosine on the contractility of normoxic rainbow trout heart.
    Aho E; Vornanen M
    J Comp Physiol B; 2002 Apr; 172(3):217-25. PubMed ID: 11919703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous adenosine does not activate ATP-sensitive potassium channels in the hypoxic guinea pig ventricle in vivo.
    Xu J; Wang L; Hurt CM; Pelleg A
    Circulation; 1994 Mar; 89(3):1209-16. PubMed ID: 8124809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional roles of cardiac and vascular ATP-sensitive potassium channels clarified by Kir6.2-knockout mice.
    Suzuki M; Li RA; Miki T; Uemura H; Sakamoto N; Ohmoto-Sekine Y; Tamagawa M; Ogura T; Seino S; Marbán E; Nakaya H
    Circ Res; 2001 Mar; 88(6):570-7. PubMed ID: 11282890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.